SPECKLE INTERFEROMETRY FOR RECORDING MICRO-DISPLACEMENTS AND DEFORMATIONS: OVERVIEW OF METHODS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This article examines a class of speckle interferometry methods suitable for measuring mechanical and thermal deformations, flaw detection, structural damage monitoring, and vibration testing of large objects. It describes the historical development of speckle interferometry, from manual image processing to the most advanced methods capable of simultaneously determining all three directions of deformation. Several classification schemes for speckle interferometry have been proposed. Applications of the method in various industrial fields are analyzed. Various objects are considered, including industrial metal products, organic materials, composite materials, and others. Industrial solutions based on electronic speckle pattern interferometry are presented

作者简介

Maxim Kravchenko

Technological Design Institute of Scientific Instrument Engineering Siberian Branch of the Russian Academy of Sciences

Email: max@tdisie.nsc.ru
俄罗斯联邦, 630058 Novosibirsk, Russkaya str., 41

Petr Zavyalov

Technological Design Institute of Scientific Instrument Engineering Siberian Branch of the Russian Academy of Sciences

Email: zavyalov@tdisie.nsc.ru
俄罗斯联邦, 630058 Novosibirsk, Russkaya str., 41

Elena Zhimuleva

Technological Design Institute of Scientific Instrument Engineering Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: slena@tdisie.nsc.ru
俄罗斯联邦, 630058 Novosibirsk, Russkaya str., 41

参考

  1. Jones R., Wykes C. Holographic and Speckle Interferometry. Cambridge: University Press, 1983.
  2. Goodman J.W. Statistical optics. New York: Wiley, 1985.
  3. Yang L., Xie X., Zhu L., Wu S. & Wang Y. Review of electronic speckle pattern interferometry (ESPI) for three dimensional displacement measurement // Chin. J. Mech. Eng. 2014. V. 27. No. 1. P. 1—13.
  4. Françon M., Ostrovsky Yu.I. Speckle Optics. Moscow: Mir, 1980. (In Russ.)
  5. Ulyanov S.S. What are speckles // Soros Educational Journal. 1999. V. 7. No. 5. P. 112—116. (In Russ.)
  6. Ryabukho V.P. Speckle interferometry // Soros Educational Journal. 2001. V. 7. No. 5. P. 102—109. (In Russ.)
  7. Mujeeb A., Nayar V.U., Ravindran V.R. Electronic Speckle Pattern Interferometry techniques for non-destructive evaluation: a review // Insight — Non-Destructive Testing and Condition Monitoring. 2006. V. 48. No. 5. P. 275—281.
  8. Jacquot P. Speckle Interferometry: A Review of the Principal Methods in Use for Experimental Mechanics Applications // Strain. 2008. V. 44. No. 1. P. 57—69.
  9. Labeyrie A. Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images // Astronomy and Astrophysics. 1970. V. 6. P. 85.
  10. Butters J.N., Leendertz J.A. A double exposure technique for speckle pattern interferometry // J. Phys. E: Sci. Instrum. 1971. V. 4. No. 4. P. 277—279.
  11. Leendertz J.A. Interferometric displacement measurement on scattering surfaces utilizing speckle effect // J. Phys. E: Sci. Instrum. 1970. V. 3. No. 3. P. 214—218.
  12. Butters J., Denby D., Doble P., Leendertz J.A. Coherent optics: a new tool in engineering measurement // Phys. Bull. 1971. V. 22. No. 7. P. 393—396.
  13. Groh G. Engineering uses of laser produced speckle patterns / Proc. Engineering uses of Holography. Cambridge University Press, 1970. P. 483—494.
  14. Burch J.M., Tokarski J.M.J. Production of multiple beam fringes from photographic scatterers // Optica Acta: International Journal of Optics. 1968. V. 15. No. 2. P. 101—111.
  15. Archbold E., Burch J.M., Ennos A.E. Recording of In-plane Surface Displacement by Double-exposure Speckle Photography // Optica Acta: International Journal of Optics. 1970. V. 17. No. 12. P. 883—898.
  16. Ostrovsky Yu.I., Butusov M.M., Ostrovskaya G.V. Holographic Interferometry. Moscow: Nauka, 1977. 339 p. (In Russ.)
  17. Francon M. Laser speckle and applications in optics. New York: Academic Press, 1979.
  18. Roddier C., Roddier F. Interferogram analysis using Fourier transform techniques // Appl. Opt. 1987. V. 26. No. 9. P. 1668—1673.
  19. Creath K. Phase measurement interferometry techniques // Progress in optics. 1988. V. 26. P. 348—393.
  20. Liu J.B., Ronney P.D. Modified Fourier transform method for interferogram fringe pattern analysis // Applied optics. Optical Society of America. 1997. V. 36. No. 25. P. 6231—6241.
  21. Barducci A., Pippi I. Analysis and rejection of systematic disturbances in hyperspectral remotely sensed images of the Earth // Applied Optics. Optical Society of America. 2001. V. 40. No. 9. P. 1464—1477.
  22. Takeda M. Fourier fringe analysis and its application to metrology of extreme physical phenomena: a review // Applied optics. OSA. 2013. V. 52. No. 1. P. 20—29.
  23. Zhang Z., Zhong J. Spatial quasi-phase-shifting technique for single-frame dynamic fringe analysis // Optics Express. 2014. V. 22. No. 3. P. 2695—2705.
  24. Lokberg O.J. Use of chopped laser light in electronic speckle pattern interferometry // Appl. Opt. 1979. V. 18. No. 14. P. 2377.
  25. Lokberg O.J. Advances and Applications of Electronic Speckle Pattern Interferometry (ESPI) / Eds. Tamura P.N., Lee T.-C. Los Angeles, 1980. P. 92—97.
  26. Wykes C. De-correlation Effects in Speckle-pattern Interferometry. 1. Wavelength change dependent de-correlation with application to contouring and surface roughness measurement // Optica Acta: International Journal of Optics. 1977. V. 24. No. 5. P. 517—532.
  27. Butters J. N., Jones R., Wykes C. Electronic speckle pattern interferometry / Speckle Metrology. New York: Academic Press. 1978. P. 111—158.
  28. Erf R. Speckle Metrology. New York: Academic Press, 1978. 346 p.
  29. Nakadate S., Yatagai T., Saito H. Digital speckle-pattern shearing interferometry // Appl. Opt. 1980. V. 19. No. 24. P. 4241—4246.
  30. Yamaguchi I. Speckle Displacement and Decorrelation in the Diffraction and Image Fields for Small Object Deformation // Optica Acta: International Journal of Optics. 1981. V. 28. No. 10. P. 1359—1376.
  31. Vikram C.S., Vedam K. Direct observation of laser speckles for real-time analysis of lateral motions // Opt. Lett. 1981. V. 6. No. 11. P. 511—513.
  32. West C. Holographic Interferometry. Moscow: Mir, 1982. 504 p. (In Russ.)
  33. Asundi A., Chiang F.P. Theory And Applications Of The White Light Speckle Method For Strain Analysis // Opt. Eng. 1982. V. 21. No. 4. P. 570—580.
  34. Murthy R.K., Sirohi R.S., Kothiyal M.P. Speckle shearing interferometry: a new method // Appl. Opt. 1982. V. 21. No. 16. P. 2865_1.
  35. Creath K. Phase-Shifting Speckle Interferometry // Applied Optics / Eds. Arsenault H.H. 1985. V. 24. No. 18. P. 337.
  36. Yamaguchi I. Automatic measurement of in-plane translation by speckle correlation using a linear image sensor // J. Phys. E: Sci. Instrum. 1986. V. 19. No. 11. P. 944—948.
  37. Wykes C. A Theoretical Approach to the Optimization of Electronic Speckle Interferometry Fringes with Limited Laser Power // Journal of Modern Optics. 1987. V. 34. No. 4. P. 539—554.
  38. Jones R., Wykes C. Holographic and speckle pattern interferometry. Cambridge: University Press, 1988.
  39. Sirohi R.S., Ganesan A.R., Kothiyal M.P. Some New Techniques With Digital Speckle Pattern Interferometry (DSPI). Porto, Portugal: Optical Testing and Metrology II Proc. SPIE, 1988. V. 954. P. 218.
  40. Joenathan C., Narayanamurthy C.S., Sirohi R.S. Localization of fringes in speckle photography that are due to axial motion of the diffuse object // J. Opt. Soc. Am. A. 1988. V. 5. No. 7. P. 1035—1040.
  41. Ganesan A.R., Sharma D.K., Kothiyal M.P. Universal digital speckle shearing interferometer // Appl. Opt. 1988. V. 27. No. 22. P. 4731.
  42. Ganesan A.R. Measurement of Poisson’s ratio using real-time digital speckle pattern interferometry // Optics and Lasers in Engineering. 1989. V. 11. No. 4. P. 265—269.
  43. Funnell W.R.J. Image processing applied to the interactive analysis of interferometric fringes // Applied Optics. Optical Society of America. 1981. V. 20. No. 18. P. 3245—3250.
  44. Mastin G.A., Ghiglia D.C. Digital extraction of interference fringe contours // Applied optics. Optical Society of America, 1985. V. 24. No. 12. P. 1727—1728.
  45. Kozachok A.G. Holographic measurement systems // Avtometriya. 1992. No. 6. P. 4. (In Russ.)
  46. Sarnadsky V.N. Digital analysis system for inhomogeneous deformation fields based on attached holographic interferometers // Avtometriya. 1986. No. 5. P. 46. (In Russ.)
  47. Yatagai T., Nakadate S., Idesawa M. & Saito H. Automatic fringe analysis using digital image processing techniques // Optical Engineering. SPIE. 1982. V. 21. No. 3. P. 432—435.
  48. Huntley J.M., Benckert L. Speckle interferometry: noise reduction by correlation fringe averaging // Appl. Opt. 1992. V. 31. No. 14. P. 2412.
  49. Jia Z., Shah S.P. Two-dimensional electronic-speckle-pattern interferometry and concrete-fracture processes // Experimental Mechanics. 1994. V. 34. No. 3. P. 262—270.
  50. Hung Y.Y., Tang S., Hovanesian J.D. Real-time shearography for measuring time-dependent displacement derivatives // Experimental Mechanics. 1994. V. 34. No. 1. P. 89—92.
  51. Krishna Mohan N.K., Masalkar P.J., Sirohi R.S. Electronic speckle pattern interferometry with holo-optical element / Eds. Brown G.M., Harding K.G., Stahl H.P. Boston, MA, 1993. P. 234—242.
  52. Petrov V., Lau B. Electronic speckle pattern interferometry with a holographically generated reference wave // Opt. Eng. 1996. V. 35. No. 8. P. 2363.
  53. Lau B., Kuschnir P., Schmid U., Petrov V. & Tomasini E. P. Application of combined method of electronic speckle pattern interferometry and holography to vibration analysis / Eds. Tomasini E.P. Ancona, Italy, 1996. P. 346—351.
  54. Wong W.O., Chan K.T., Leung T.P. Identification of antinodes and zero-surface-strain contours of flexural vibration with time-averaged speckle pattern shearing interferometry // Appl. Opt. 1997. V. 36. No. 16. P. 3776.
  55. Sirohi R.S., Burke J., Helmers H. & Hinsch K.D. Spatial phase shifting for pure in-plane displacement and displacement-derivative measurements in electronic speckle pattern interferometry (ESPI) // Appl. Opt. 1997. V. 36. No. 23. P. 5787.
  56. Fernández A., Moore A.J., Pérez-López C., Doval A.F. & Blanco-García J. Study of transient deformations with pulsed TV holography: application to crack detection // Appl. Opt. 1997. V. 36. No. 10. P. 2058.
  57. Kaufmann G.H. Evaluation of a scale-space filter for speckle noise reduction in electronic speckle pattern interferometry // Opt. Eng. 1998. V. 37. No. 8. P. 2395.
  58. Zhang J., Chong T.C. Fiber electronic speckle pattern interferometry and its applications in residual stress measurements // Appl. Opt. 1998. V. 37. No. 28. P. 6707.
  59. Petrov V., Lau B. Electronic speckle pattern interferometry with thin beam illumination of miniature reflection and transmission speckling elements for in-plane deformation measurements // Opt. Eng. 1998. V. 37. No. 8. P. 2410.
  60. Yamaguchi I., Yamamoto A., Kuwamura S. Speckle decorrelation in surface profilometry by wavelength scanning interferometry // Appl. Opt. 1998. V. 37. No. 28. P. 6721.
  61. Verga A., Baglioni P., Dupont O., Dewandel J-L., Beuselinck T., Bouwen J., Cha S.S., Trolinger J.D. & Kawahashi M. Use of electronic speckle pattern interferometers for the analysis of convective states of liquids in weightlessness / Eds. Cha S.S., Trolinger J.D., Kawahashi M. San Diego, CA, 1997. P. 194—210.
  62. Ganesan A.R., Joenathan C., Sirohi R.S. Sharpening of fringes in digital speckle pattern interferometry // Appl. Opt. 1988. V. 27. No. 11. P. 2099—2100.
  63. Sirohi R.S., Mohan N.K. Speckle Interferometry for Deformation Measurement // Journal of Modern Optics. 1992. V. 39. No. 6. P. 1293—1300.
  64. Guzhov V.I., Ilyinykh S.P. Computer interferometry. Novosibirsk: NGTU Publishing House, 2003. 311 p. (In Russ.)
  65. Goodman J. W. Speckle Phenomena in Optics: Theory and Applications. Colorado: Ben Roberts. 2007.
  66. Gorbatenko B.B., Lyakin D.V., Perepelitsina O.A. & Ryabukho V.P. Optical schemes and statistical characteristics of displacement speckle interferometers // Computer Optics. 2009. V. 33. No. 3. P. 268—280. (In Russ.)
  67. Yang L., Gao X. Electronic speckle pattern interferometry (ESPI) / Handbook of aser Technology and Applications. Laser Applications. Medical, Metrology and Communication. 2nd Edition. CRC Press, 2021. V. IV. P. 19.
  68. Slettemoen G.Å., Wyant J.C. Maximal fraction of acceptable measurements in phase-shifting speckle interferometry: a theoretical study // JOSA A. Optica Publishing Group. 1986. V. 3. No. 2. P. 210—214.
  69. Meng W., Bachilo S.M., Weisman R.B. & Nagarajaiah S. A Review: Non-Contact and Full-Field Strain Mapping Methods for Experimental Mechanics and Structural Health Monitoring // Sensors. 2024. V. 24. No. 20. P. 6573.
  70. Meldal P., Vikhaben E. Method and device for surface vibration studies using scanning speckle interferometer: pat. RU2363019C2 USA. 2009. (in Russ.)
  71. Elenevsky D.S., Shaposhnikov Yu.N. Laser-computer system for acquisition and analysis of speckle interferograms of vibrating objects // Izvestia Samara Scientific Center RAS. 1999. V. 1. (in Russ.)
  72. Liu H., Lu G., Jones J., Komisarek D., Wu S., Harding K.G., Svetkoff D.J., Creath K. & Harris J.S. Speckle-induced phase error in laser-based phase-shifting projected-fringe profilometry // J. Opt. Soc. Am. / Eds. Harding K.G. et al. 1998. P. 1484—1495.
  73. Kadono H., Bitoh Y., Toyooka S. Statistical interferometry based on a fully developed speckle field: an experimental demonstration with noise analysis // J. Opt. Soc. Am. A. 2001. V. 18. No. 6. P. 1267—1274.
  74. Steinchen W., Yang L. Digital Shearography: Theory and Application of Digital Speckle Pattern Shearing Interferometry. Bellingham, WA: SPIE Press, 2003. 336 с.
  75. Zhuzhukin A.I. Mobile digital speckle interferometer for vibration measurement of gas turbine engine components and assemblies: Candidate of Technical Sciences thesis. Samara: SSAU, 2011. (In Russ.)
  76. Hung Y.Y., Rowlands R.E., Daniel I.M. Speckle-Shearing Interferometric Technique: a Full-Field Strain Gauge // Appl. Opt. 1975. V. 14. No. 3. P. 618—622.
  77. Vishnyakov G.N., Ivanov A.D., Vinogradov F.Y. Shearing speckle interferometer (variants) / Pat. RU2726045C1 USA. (in Russ.)
  78. Bruning J.H., Herriot D.R., Gallagher J.E., Rosenfeld D.P., White A.D. & Brangaccio D.J. Digital wavefront measuring interferometer for testing optical surfaces and lenses // Applied Optics. Optical Society of America, 1974. V. 13. No. 11. P. 2693—2703.
  79. Takeda M., Ina H., Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry // Journal of the Optical Society of America. Optical Society of America, 1982. V. 72. No. 1. P. 156—160.
  80. Kujawinska M., Wojiak J. Spatial phase-shifting techniques of fringe pattern analysis in photomechanics // Second International Conference on Photomechanics and Speckle Metrology. SPIE. 1991. V. 1554. P. 503.
  81. Pedrini G., Tiziani H.J. Double-pulse electronic speckle interferometry for vibration analysis // Applied optics. Optica Publishing Group. 1994. V. 33. No. 34. P. 7857—7863.
  82. Hung Y.Y. Shearography: a new optical method for strain measurement and nondestructive testing // Optical Engineering. SPIE. 1982. V. 21. No. 3. P. 391—395.
  83. Steinchen W., Kupfer G., Mackel P. & Vossing F. Determination of strain distribution by means of digital shearography // Measurement. 1999. V. 26. No. 2. P. 79—90.
  84. Steinchen W., Yang L.X., Kupfer G., Mackel P. & Vossing F. Strain analysis by means of digital shearography: Potential, limitations and demonstration // The Journal of Strain Analysis for Engineering Design. 1998. V. 33. No. 2. P. 171—182.
  85. Xie X., Chen X., Li J., Wang Y. & Yang L. Measurement of in-plane strain with dual beam spatial phase-shift digital shearography // Meas. Sci. Technol. V. 26. P. 115202.
  86. Anisimov A.G., Groves R.M. Extreme shearography: Development of a high-speed shearography instrument for quantitative surface strain measurements during an impact event // Optics and Lasers in Engineering. 2021. V. 140. P. 106502.
  87. Vlasov N.G., Shtanko A.E. Phase stepping method. 1995. (In Russ.)
  88. Robinson D.W., Williams D.C. Digital phase stepping speckle interferometry // Optics Communications. Elsevier. 1986. V. 57. No. 1. P. 26—30.
  89. Larkin K.G., Oreb B.F. New seven-sample symmetrical phase-shifting algorithm // Interferometry: Techniques and Analysis. SPIE. 1993. V. 1755. P. 2—11.
  90. Vladimirov A.P., Malygin A.S., Pavlov T.N., Popov D.O., Yakovleva S.V. Dynamic speckle interferometry of biological membranes: collection of projects of the 11th International Workshop-Fair “Russian Technologies for Industry”, November 20-23, 2007 [Text] // Saint Petersburg. 2007. P. 83. (In Russ.)
  91. Venzel V.I., Miloradov A.B. Infrared interferometer / Pat. RU182727U1 USA. 2018. (In Russ.)
  92. Mujeeb A., Ravindran V. R., Nayar V. U. Speckle non destructive testing (SNDT) of low modulus materials / Proc. DAE-BRNS National Laser Symposium. 2002. P. 275—276.
  93. Mujeeb A., Ravindran V.R., Nayar V. U. Studies on TV holography for the nondestructive evaluation (NDE) of space vehicle components / Proc. Kerala Science Congress. 2002.
  94. Pedrini G., Pfister B., Tiziani H. Double Pulse-electronic Speckle Interferometry // Journal of Modern Optics. 1993. V. 40. No. 1. P. 89—96.
  95. Zavyalov P.S., Kravchenko M.S., Urzhumov V.V., Kuklin V.A. & Mikhalkin V.M. Investigation of the metrological characteristics of the PulsESPI system applied to the precision inspection of thermal deformations // Siberian aerospace journal. 2019. V. 20. No. 2. P. 210—218.
  96. Shibayama K., Uchiyama H. Measurement of Three-Dimensional Displacements by Hologram Interferometry // Appl. Opt. 1971. V. 10. No. 9. P. 2150.
  97. Wang Y., Sun J., Li J., Gao X., Wu S. & Yang L. Synchronous measurement of three-dimensional deformations by multicamera digital speckle patterns interferometry // Optical Engineering. Society of Photo-Optical Instrumentation Engineers. 2016. V. 55. No. 9. P. 091408—091408.
  98. Vishnyakov G.N., Ivanov A.D., Vinogradov F.Yu. Shearing speckle interferometer with quad lens // Optics and Spectroscopy. Ioffe Institute of the Russian Academy of Sciences, 2020. V. 128. No. 10. P. 1577—1582. (In Russ.)
  99. Arai Y. Three-dimensional shape measurement beyond the diffraction limit of lens using speckle interferometry // Journal of Modern Optics. 2018. V. 65. No. 16. P. 1866—1874.
  100. Aksenov E.A., Shmatko A.A., Zvorsky V.I. & Kravchuk A.S. Non-contact speckle interferometric displacement meter // Radioelectronic and Computer Systems. National Aerospace University named after N.E. Zhukovsky “Kharkiv Aviation Institute”, 2008. No. 1. P. 15—19. (In Russ.)
  101. Stetson K.A. Vibratory strain field measurement by transverse digital holography // Applied Optics. Optica Publishing Group. 2015. V. 54. No. 27. P. 8207—8211.
  102. Tokovinin A., Mason B.D., Mendez R.A. & Costa E. Speckle Interferometry at SOAR in 2021 // The Astronomical Journal. IOP Publishing. 2022. V. 164. No. 2. P. 58.
  103. Genovese K., Lamberti L., Pappalettere C. A comprehensive ESPI based system for combined measurement of shape and deformation of electronic components // Optics and Lasers in Engineering. Elsevier. 2004. V. 42. No. 5. P. 543—562.
  104. Anisimov A.G., Serikova M.G., Groves R.M. 3D shape shearography technique for surface strain measurement of free-form objects // Appl. Opt. 2019. V. 58. No. 3. P. 498.
  105. Zavyalov P.S., Kravchenko M.S., Urzhumov V.V., Kuklin V.A. & Mikhalkin V.M. Study of metrological characteristics of PulsESPI system for precision monitoring of thermal deformations // Reshetnev Readings. Zheleznogorsk. 2018. V. 1. P. 107—109. (In Russ.)
  106. Zavyalov P.S., Kravchenko M.S., Savinov K.I., Savchenko M.V. & Beloborodov A.V. High Precision Measurements of Thermal Deformations of Spacecraft Reflectors // Instrum. Exp. Tech. 2023. V. 66. No. 1. P. 127—138.
  107. Lang H., Rampado M., Müllejans R. & Raab W.H.-M. Determination of the dynamics of restored teeth by 3D electronic speckle pattern interferometry // Lasers Surg Med. 2004. V. 34. No. 4. P. 300—309.
  108. Campos L.M.P., Parra D.F., Vasconcelos M.R., Vaz M. & Monteiro J. DH and ESPI laser interferometry applied to the restoration shrinkage assessment // Radiation Physics and Chemistry. Elsevier. 2014. V. 94. P. 190—193.
  109. Zhang H., Wu S., Li W., Wang Y., Dong M. & Yang L. Precise Detection of Wrist Pulse Using Digital Speckle Pattern Interferometry // Evidence-Based Complementary and Alternative Medicine / Eds. Da Silva Filho A.A. 2018. V. 2018. No. 1. P. 4187349.
  110. Daffara C., Mazzocato S., De Rubeis T. & Ambrosini D. A simple method for artworks monitoring by simultaneous speckle interferometry (ESPI) and speckle photography // Optics for Arts, Architecture, and Archaeology VIII. SPIE. 2021. V. 11784. P. 79—86.
  111. Pfeiffer E.K., Ihle A., Klebor M., Reichmann O., Linke S., Tschepe C., Nathrath N. & Grillenbeck A. Highly stable antenna structure technologies / Proceedings of 32nd ESA Antenna Workshop on Antennas for Space Applications, Noordwijk, The Netherlands. Citeseer, 2010.
  112. Ernst T., Linke S, Lori M., Fasold D., Haefker W., Nösekabel E.H. & Santiago-Prowald J. Highly stable Q/V band reflector demonstrator manufacturing and testing / Proc. of 29th ESA Antenna Workshop, ESTEC, Noordwijk, Netherlands. 2007.
  113. Gualini M.M.S., Iqbal S., Khan W.A. & Sixt W. ESPI and PulsESPI applied to ophthalmology using modified Twymann-Green interferometer // Journal of Applied Sciences. 2008. V. 8. No. 4. P. 677—681.
  114. Nösekabel E.H., Ernst T., Haefker W. Measurement of the thermal deformation of a highly stable antenna with pulse ESPI // Optical Measurement Systems for Industrial Inspection V. SPIE. 2007. V. 6616. P. 845—854.
  115. Van der Auweraer H., Steinbichler H., Haberstok C., Freymann R., Storer D. & Linet V. Industrial applications of pulsed-laser ESPI vibration analysis // IMAC-XIX: A Conference on Structural Dynamics. 2001. V. 1. P. 490—496.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».