Анализ сжатых изображений тепловых волн при контроле подповерхностных слоев

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Определение параметров подповерхностных слоев изделий в активной термографии требует высокой скорости съемки, что приводит к сокращению времени экспозиции, избыточности данных, требованию большой пропускной способности, нерациональному использованию ресурсов датчика и памяти. Компрессионное зондирование (КЗ) - это методика получения данных, с помощью которой преодолеваются данные ограничения путем получения сигнала на частотах ниже частоты Найквиста при меньшем количестве измерений, учитывая, что сигнал разрежен в некоторых преобразованных областях и восстанавливается до исходного отклика. В данной работе проверяется эффективность применения КЗ при визуализации частотно-модулированных тепловых волн путем проведения экспериментов на образцах из низкоуглеродистой стали c высоким тепловым откликом с искусственно созданными дефектами. Дискретное косинус-преобразование выбрано в качестве метода априорного разрежения, а ортогональное согласованное преследование используется для восстановления исходного теплового отклика из сжатых изображений. Первоначально проводится анализ выбора оптимального параметра разреженности и количества измерений, затем осуществляется оценка влияния количества измерений на обнаружение дефектов в различных методах постобработки, используемых при частотно-модулированной импульсации. Обнаруженные дефекты и их качественный анализ с помощью оценки отношения сигнал/шум подтвердили пригодность КЗ для эффективного восстановления данных тепловых измерений и, таким образом, улучшения восстановления формы дефектов.

Об авторах

Мд. М Паша

Центр тепловидения, Образовательный фонд Конеру Лакшмайя, Ваддесварам

Email: urspasha@gmail.com
Андхра-Прадеш, Индия

В. С Гали

Центр тепловидения, Образовательный фонд Конеру Лакшмайя, Ваддесварам

Андхра-Прадеш, Индия

Г. Т Весала

Центр тепловидения, Образовательный фонд Конеру Лакшмайя, Ваддесварам

Андхра-Прадеш, Индия

Б. Суреш

Центр тепловидения, Образовательный фонд Конеру Лакшмайя, Ваддесварам

Андхра-Прадеш, Индия

Список литературы

  1. Candes E.Compressive Sampling // Int. Congress of Mathematics. 2006. P. 1433-1452.
  2. Candes E., Wakin M. An introduction to compressive sampling // IEEE Signal Processing Magazine. 2008. V. 25 (2). P. 21-30.
  3. Davenport M., Duarte M., Eldar Y., Kutyniok G.Introduction to compressed sensing. Chapter in Compressed Sensing: Theory and Applications. Cambridge University Press, 2012.
  4. de Oliveira Mateus M., Khosravy Mahdi, Monteiro Henrique L.M., Cabral Thales W., Dias Felipe M., Lima Marcelo A.A., Manso Silva Leandro R., Duque Carlos A.Compressive sensing of electroencephalogram: a review // Compressive sensing in healthcare. 2020. P. 247-268.
  5. Gunasheela S.K., Prasantha H.S.Compressed sensing for image compression: survey of algorithms. Emerging Research in Computing, Information, Communication and Applications. Springer, Singapore, 2019. P. 507-517.
  6. Shi Jianing V., Sankaranarayanan Aswin C., Studer Christoph, Baraniuk Richard G. Video compressive sensing for dynamic MRI // BMC neuroscience. 2012. V. 13. No. 1. P. 1-1.
  7. Maldague X.P.V. Theory and Practice of Infrared Thermography for Nondestructive Testing. New York: Wiley, 2001.
  8. Ciampa Francesco, Mahmoodi Pooya, Pinto Fulvio, Meo Michele. Recent advances in active infrared thermography for non-destructive testing of aerospace components // Sensors. 2018. V. 18. No. 2. P. 609.
  9. Bison P.G., Bressan C., Di Sarno R., Grinzato E., Marinetti S., Manduchi G. Thermal NDE of delaminations in plastic materials by neural network processing // QIRT. 1995. V. 94. P. 214-219.
  10. Ibarra-Castanedo Clemente, Benítez Hernan, Maldague Xavier, Bendada Abdelhakim. Review of thermal-contrast-based signal processing techniques for the nondestructive testing and evaluation of materials by infrared thermography / Proc.Int. Workshop on Imaging NDE. 2007. Kalpakkam, India, 25-28 April 2007. P. 1-6.
  11. Bagavac Petra, Krstulović-Opara Lovre, Domazet Željko. Infrared thermography of steel structure by FFT // Materials Today: Proceedings. 2019. No. 12. P. 298-303.
  12. Garrido Iván, Lagüela Susana, Sfarra Stefano, Arias Pedro. Development of thermal principles for the automation of the thermographic monitoring of cultural heritage // Sensors. 2020. V. 20. No. 12. P. 3392.
  13. Panella F.W., Pirinu A. Application of pulsed thermography and post-processing techniques for CFRP industrial components // Journal of Nondestructive Evaluation. 2021. V. 40. No. 2. P. 1-17.
  14. Fleuret Julien R., Ebrahimi Samira, Ibarra-Castanedo Clemente, Maldague Xavier P.V. Independent component analysis applied on pulsed thermographic data for carbon fiber reinforced plastic inspection: a comparative study // Applied Sciences. 2021. V. 11. No. 10. P. 4377.
  15. Lopez Fernando, Ibarra-Castanedo Clemente, de Paulo Nicolau Vicente, Maldague Xavier. Optimization of pulsed thermography inspection by partial least-squares regression // Ndt & E International. 2014. V. 66. P. 128-138.
  16. Subhani S.K., Suresh B., Ghali V.S. Orthonormal projection approach for depth-resolvable subsurface analysis in non-stationary thermal wave imaging // Insight-Non-Destructive Testing and Condition Monitoring. 2016. V. 58. No. 1. P. 42-45.
  17. Tabatabaei Nima, Mandelis Andreas. Thermal-wave radar: A novel subsurface imaging modality with extended depth-resolution dynamic range // Review of Scientific Instruments. 2009. V. 80. No. 3. P. 034902.
  18. Wang Fei, Wang Yonghui, Liu Junyan, Wang Yang. The feature recognition of CFRP subsurface defects using low-energy chirp-pulsed radar thermography // IEEE Transactions on Industrial Informatics. 2019. V. 16. No. 8. P. 5160-5168.
  19. Rani Anju, Ravibabu Mulaveesala. Depth resolved pulse compression favourable frequency modulated thermal wave imaging for quantitative characterization of glass fibre reinforced polymer // Infrared Physics & Technology. 2020. V. 110. P. 103441.
  20. Deane Shakeb, Avdelidis Nicolas P., Ibarra-Castanedo Clemente, Williamson Alex A., Withers Stephen, Zolotas Argyrios, Maldague Xavier P.V. et al. Development of a thermal excitation source used in an active thermographic UAV platform // Quantitative InfraRed Thermography Journal. 2022. P. 1-32.
  21. Roy Deboshree, Tuli Suneet. Applicability of LED-based excitation source for defect depth resolved frequency modulated thermal wave imaging // IEEE Transactions on Instrumentation and Measurement. 2017. V. 66. No. 10. P. 2658-2665.
  22. Roy Deboshree, Babu Prabhu, Tuli Suneet. Sparse reconstruction-based thermal imaging for defect detection // IEEE Transactions on Instrumentation and Measurement. 2019. V. 68. No. 11. P. 4550-4558.
  23. Ahmadi Samim, Burgholzer P., Mayr G., Jung P., Caire G., Ziegler Mathias. Photothermal super resolution imaging: A comparison of different thermographic reconstruction techniques // NDT & E International. 2020. V. 111. P. 102228.
  24. Chen S.S., Donoho D.L., Saunders M.A. Atomic decomposition by basis pursuit // SIAM J. Sci.Comput. 1999. V. 43. No. 1. P. 129-159.
  25. Subhani Sk., Tanguturi Rama Chaithanya, Ghali V.S. Chirp Z Transform Based Barker Coded Thermal Wave Imaging for the Characterization of Fiber Reinforced Polymers // Russian Journal of Nondestructive Testing. 2021. V. 57. No. 7. P. 627-634.
  26. Vesala G.T., Ghali V.S., Subhani S., Naga Prasanthi Y. Material characterisation by enhanced resolution in non-stationary thermal wave imaging // Insight-Non-Destructive Testing and Condition Monitoring. 2021. V. 63. No. 12. P. 721-726.
  27. Candes E., Romberg J. Practical signal recovery from random projections // IEEE Transactions on Signal Processing. 2005.
  28. Candes E., Romberg J., Tao T. Stable signal recovery from incomplete and inaccurate measurements // Communications on Pure and Applied Mathematics. 2006. V. 59. No. 8. P. 1207-1223.
  29. Candes E.J., Romberg J. Sparsity and incoherence in compressive sampling // Inverse Problems. 2007. V. 23. No. 3. P. 969-985.
  30. Candes E., Tao T. Near optimal signal recovery from random projections and universal encoding strategies / Technical Report math. CA/0410542. 2004.
  31. Pati Y.C., Rezaifar R., Krishnaprasad P.S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition / Proc. Rec 27th Asilomar Conf Sign. Syst Comput, 1993.
  32. Murthy N.S.S.R., Muralikrishna I.V.Comparative Analysis of FFT and DCT Performances in Image Compression and Evaluation of Their Performances // Indian Journal Of Applied Research. 2015. V. 5. No. 11.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах