Mathematical modeling of radiation transparencies in the countable implementation of the dual energy method based on analog amplitude analysis of original signals

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A mathematical model of radiation transparency in the computational implementation of the dual energy method based on analog discrimination of the original signals is given. The generalized mathematical model of radiation transparency in the analyzed implementation of the dual energy method is based on the analog separation of the initial electrical signals from the X-ray detector by amplitude into low-energy and high-energy signals with subsequent counting of these signals. Analog separation of the output signals of the X-ray detector by amplitude is carried out using a two-channel amplitude analyzer. The proposed model takes into account the maximum energy of X-ray photons, the energy threshold for separating signals into low-energy and high-energy signals, materials and sizes of radiation-sensitive detector elements, and parameters of control objects. The model can be used to conduct research on the influence of noise caused by the quantum nature of X-ray radiation on the quality of identification of the attenuating material, for example, by effective atomic number, in relation to the considered implementation of the dual energy method, as well as for a reasonable choice of parameters of the corresponding dual-energy digital radiography systems and X-ray computed tomography.

Texto integral

Acesso é fechado

Sobre autores

V. Udod

National Research Tomsk State University

Autor responsável pela correspondência
Email: pr.udod@mail.ru
Rússia, Lenin Ave., 36, 634050, Tomsk

S. Vorobeychikov

National Research Tomsk State University

Email: sev@mail.tsu.ru
Rússia, Lenin Ave., 36, 634050, Tomsk

S. Osipov

National Research Tomsk Polytechnic University

Email: osip1809@rambler.ru
Rússia, Lenina Ave., 30, 634050, Tomsk

Bibliografia

  1. Khan S.U., Khan I.U., Ullah I., Saif N., Ullah I. A review of airport dual energy X-ray baggage inspection techniques: image enhancement and noise reduction // Journal of X-ray Science and Technology. 2020. V. 28. No. 3. P. 481―505. https://doi.org/10.3233/XST-200663
  2. Yalçın O., Reyhancan I.A. Detection of explosive materials in dual-energy X-Ray security systems // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2022. V. 1040. P. 167265. https://doi.org/10.1016/j.nima.2022.167265. EDN: HMLQTK.
  3. Chang C.H., Ni Y.C., Tseng S.P. Calculation of effective atomic numbers using a rational polynomial approximation method with a dual-energy X-ray // Journal of X-Ray Science and Technology. 2021. V. 29. No. 2. P. 317―330. https://doi.org/10.3233/xst-200790
  4. Yim C.W., Hong S.G. A MCNP simulation for a new dual-energy dual-beam X-ray inspection method using multi-angle Compton scattering to determine the effective atomic number of explosives // Radiation Physics and Chemistry. 2022. V. 195. P. 110084. https://doi.org/10.1016/j.radphyschem.2022.110084. EDN: QTOMYF.
  5. Duvillier J., Dierick M., Dhaene J., Van Loo D., Masschaele B., Geurts R., Hoorebeke L.V., Boone M.N. Inline multi-material identification via dual energy radiographic measurements // NDT & E International. 2018. V. 94. P. 120―125. https://doi.org/10.1016/j.ndteint.2018.01.002
  6. Cordova A. Technologies for primary screening in aviation security // Journal of Transportation Security. 2022. V. 15. No. 3—4. P. 141―159. https://doi.org/10.1007/s12198-022-00248-8
  7. Linardatos D., Koukou V., Martini N., Konstantinidis A., Bakas A., Fountos G., Valais I., Michail C. On the response of a micro non-destructive testing X-ray detector // Materials. 2021. 14. P. 888. https://doi.org/10.3390/ma14040888
  8. Vukadinovic D., Anderson D. X-ray baggage screening and AI, EUR 31123 EN, Publications Office of the European Union, Luxembourg, 2022. http://dx.doi.org/10.2760/46363
  9. Osipov S.P., Udod V.A., Wang Y. Identification of materials in X-Ray inspections of objects by the dual-energy method // Russian Journal of Nondestructive Testing. 2017. V. 53. No. 8. P. 568―587. https://doi.org/10.1134/S1061830917080058. EDN: XPBBAH.
  10. Kayalvizhi R., Malarvizhi S., Topkar A., Vijayakumar P. Raw data processing techniques for material classification of objects in dual energy X-ray baggage inspection systems // Radiation Physics and Chemistry. 2022. V. 193. P. 109512. https://doi.org/10.1016/j.radphyschem.2021.109512. EDN: TVVVTB.
  11. Mamchur D., Peksa J., Le Clainche S., Vinuesa R. Application and advances in radiographic and novel technologies used for non-intrusive object inspection // Sensors. 2022. V. 22. No. 6. P. 2121. https://doi.org/10.3390/s22062121. EDN: HKXRET.
  12. Alvarez R.E. Invertibility of the dual energy x-ray data transform // Medical Physics. 2019. V. 46. No. 1. P. 93―103. https://doi.org/10.1002/mp.13255
  13. Osipov S., Chakhlov S., Udod V., Usachev E., Schetinkin S., Kamysheva E. Estimation of the effective mass thickness and effective atomic number of the test object material by the dual energy method // Radiation Physics and Chemistry. 2020. V. 168. P. 108543. https://doi.org/10.1016/j.radphyschem.2019.108543. EDN: XJMSTU.
  14. Zhang Y., Kong W., Li D., Liu X. On using XMC R-CNN model for contraband detection within X-ray baggage security images // Mathematical Problems in Engineering. 2020. V. 2020. P. 1823034. https://doi.org/10.1155/2020/1823034. EDN: KEUNDA.
  15. Ogorodnikov S.A. Recognition of materials during radiation customs control based on a linear electron accelerator / Dis. ... Cand. tech. Sci. Saint Petersburg. 2002. 121 p.
  16. Svistunov Yu.A., Vorogushin M.F., Petrunin V.I. ,Sidorov A.V., Gavrish Yu.N., Fialkovsky A.M. Development of work on the creation of X-ray and nuclear physics inspection complexes at NIIEFA named after D.V. Efremova // Рroblems of atomic science and technology. 2006. No 3. P. 171―173.
  17. Chen Xue Liang, Chen Li, Huo Mei Chun, Yang Li Rui, Dong Ming Wen, Kong Wei Wu, Yang XiaoYue, Xue Kai, Li Yong Qing, Li Guang Qing, Zhao Lei. European Patent Office Appl. #2458408. MPKG01V 5/00. Dual-energy X-ray body scanning device and image processing method, Beijing Zhongdun Anmin Analysis Technology Co. Ltd., First Res of Ministry of Public Security of PRC no. 11167491, declared May 25, 2011, publ. May 30, 2012.
  18. Fredenberg E. Spectral and dual-energy X-ray imaging for medical applications // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2018. V. 878. P. 74―87. https://doi.org/10.1016/j.nima.2017.07.044
  19. Udod V.A., Osipov S.P., Nazarenko S.Yu. Algorithm for Evaluating Errors in Recognition of Materials in X-Ray Testing System Containing X-Ray Sandwich Detectors // Russian Journal of Nondestructive Testing. 2022. V. 58. No. 1. P. 46―56. https://doi.org/10.1134/S1061830922010065. EDN: JQWDYU.
  20. Udod V.A., Vorobeichikov S.E., Nazarenko S.Y. Mathematical models of radiation transparency of test objects when using sandwich X-ray radiation detectors // Russian Journal of Nondestructive Testing. 2020. V. 56. No. 2. P. 161―170. https://doi.org/10.1134/S1061830920020096. EDN: NFCCTR.
  21. Udod V.A., Osipov S.P., Wang Y. Estimating the influence of quantum noises on the quality of material identification by the dual-energy method // Russian Journal of Nondestructive Testing. 2018. V. 54. No. 8. P. 585―600. https://doi.org/10.1134/S1061830918080077. EDN: WTNFBC.
  22. Marchuk G.I., Orlov V.V. On the theory of conjugate functions. In the book: Neutron physics. Sat. articles. Ed. P.A. Krupchinsky. M.: Atomizdat, 1961. P. 30―45.
  23. Gavrish Yu.N., Berdnikov Ya.A., Spirin D.O., Perederiy A.N., Safonov M.V., Romanov I.V. Software package for restoration of introscopic images using the dual energy method // Рroblems of atomic science and technology. 2010. No. 3. Series: Nuclear Physics Investigations (54). P. 123―125.
  24. Rogers T.W., Jaccard N., Griffin L.D. A deep learning framework for the automated inspection of complex dual-energy x-ray cargo imagery. — Anomaly Detection and Imaging with X-Rays (ADIX) II // International Society for Optics and Photonics. 2017. V. 10187. P. 101870L. https://doi.org/10.1117/12.2262662
  25. Gorbunov V.I., Pokrovsky A.V. Radiometric radiation monitoring systems. M.: Atomizdat, 1979. 224 p.
  26. Tarasov G.P. Statistical methods of information processing in systems for measuring ionizing radiation. M.: Atomizdat, 1980. 208 p.
  27. Solodushkin V.I., Udod V.A., Klimenov V.A., Temnik A.K. Optimal evaluation of radiometric signal intensity for the count-time radiation recording mode // Russian Journal of Nondestructive Testing. 2012. V. 48. No. 9. P. 505―510. https://doi.org/10.1134/S1061830912090070. EDN: RGBSON.
  28. Ventzel E.S., Ovcharov L.A. Probability theory. Second edition. M.: Science. Main editorial office of Phys.-Math. lit., 1973. 368 p.
  29. Ventzel E.S., Ovcharov L.A. Probability theory and its engineering applications. M.: Science. Main editorial office of Phys.-Math. lit., 1988. 480 p.
  30. Tsitsiashvili G.Sh. Poisson flows in systems with retrial queues // Bulletin of Tomsk State University. Management, computing and information science. 2016. No. 4 (37). P. 83―88. https://doi.org/10.17223/19988605/37/9. EDN: XDCCZT.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig.1

Baixar (62KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies