Application of the acoustic emission method for ranking by fatigue damage of the material of trunnions of drying cylinders of cardboard and paper-making machines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using the example of assessing the technical condition of the trunnions of drying cylinders of cardboard-making machines (CDM), the question of the possibility of ranking cyclically loaded elements of dynamic equipment according to the degree of damage to their material by fatigue cracks using acoustic emission (AE) measurements is discussed. As a result of special laboratory studies with varying loads in the cycle of loading and lubrication of the crack banks, the features of AE from the friction of the crack banks and plastic deformation at the crack tip during its growth in a viscous material have been established. It is shown that during cyclic loading of the material, AE signals from the friction of its shores are detected more steadily than AE signals from a crack jump with an increase in its length, and that tracking the former ensures the detection of fatigue damage of the material even under loading conditions insufficient for crack growth. Based on the data obtained, three AE signs of the presence of fatigue damage of the material of the elements of dynamic equipment were developed under the condition of cyclic activation of the movement of the crack banks. As a result of industrial testing of the developed AE features, their operability was confirmed and their boundary values on the operating trunnions of CDM drying cylinders were clarified, and a method for ranking trunnions by the level of damage by fatigue cracks was proposed. By comparing the results of AE measurements with ultrasound control, the reliability of the proposed approach was evaluated, which showed the probability of detecting a fatigue crack in the trunnions of CDM drying cylinders at the level of 71 %, with the probability of their skipping and false rejection of the product 12 and 17 %, respectively. The developed technique is also transferable to other massive dynamic equipment after clarifying the boundary values of AE signs of fatigue damage of the material on this type of object.

About the authors

I. A Rastegaev

Togliatti State University

Email: rastigaev@yandex.ru
Toliatti, Russia

A. K Khrustalev

Togliatti State University

Toliatti, Russia

A. V Danyuk

Togliatti State University

Toliatti, Russia

M. A Afanas'yev

Togliatti State University

Toliatti, Russia

D. L Merson

Togliatti State University

Toliatti, Russia

D. V Sevast'yanov

The Koryazhma branch of Ilim Group

Koryazhma, Russia

S. V Melent'ev

The Koryazhma branch of Ilim Group

Koryazhma, Russia

A. D Plyusnin

LLC «Prikamsky cardboard»

Perm, Russia

References

  1. Коряковская Н.В., Бедердинова О.И. Контроль и регулирование влажности бумажного полотна // Известия вузов. Лесной журнал. 2022. № 1. С. 188-204.
  2. Ягуткин В.А., Илюшин В.В. Опыт восстановления цапф сушильных цилиндров методом наплавки // Леса России и хозяйство в них. 2013. № 1 (44). С. 195-198.
  3. Сиваков В.П., Микушина В.Н. Диагностирование технического состояния сушильных цилиндров бумагоделательных машин по температуре // Современные проблемы науки и образования. 2014. № 4. 8 с.
  4. Сиваков В.П., Музыкантова В.И., Вихарев С.Н., Мишин С.А. Обоснование технического обслуживания оборудования целлюлозно-бумажного производства диагностированием // Известия вузов. Лесной журнал. 2009. № 3. С. 118-125.
  5. Chen X., Wang S., Qiao B., Chen Q. Basic research on machinery fault diagnostics: Past, present, and future trends // Frontiers of Mechanical Engineering. 2018. No. 13. P. 264-291.
  6. Kushwaha N., Patel V. N. Modelling and analysis of a cracked rotor: a review of the literature and its implications // Archive of Applied Mechanics. 2020. No. 90. P. 1215-1245.
  7. Иванов В.И., Барат В.А. Акустико-эмиссионная диагностика. М.: Спектр, 2017. 368 с.
  8. Буденков Г.А., Недзвецкая О.В. Динамические задачи теории упругости в приложении к проблемам акустического контроля и диагностики. М.: Издательство физико-математической литературы, 2004. 136 с.
  9. Barat V., Marchenkov A., Ushanov S., Bardakov V., Elizarov S. Investigation of Acoustic Emission of Cracks in Rails under Loading Close to Operational // Applied Sciences. 2022. 12 (22). P.11670.
  10. Carrasco Á., Méndez F., Leaman F., Vicuña C. Short Review of the Use of Acoustic Emissions for Detection and Monitoring of Cracks // Acoustics Australia. 2021. No. 49. P. 273-280.
  11. Keshtgar A., Sauerbrunn C. M., Modarres M. Structural Reliability Prediction Using Acoustic Emission-Based Modeling of Fatigue Crack Growth // Applied Sciences. 2018. No. 8. P. 1225.
  12. Andreev K., Shetty N., Verstrynge E. Acoustic emission based damage limits and their correlation with fatigue resistance of refractory masonry // Construction and Building Materials. 2018. No. 165. P. 639-646.
  13. Elizarov S.V., Barat V.A., Terentyev D.A., Kostenko P.P., Bardakov V.V., Alyakritsky A.L., Koltsov V.G., Trofimov P.N. Acoustic Emission Monitoring of Industrial Facilities under Static and Cyclic Loading // Applied Sciences. 2018. No. 8. P. 1228.
  14. Ono K. Structural Health Monitoring of Large Structures Using Acoustic Emission - Case Histories // Applied Sciences. 2019. 9 (21). 4602.
  15. Sheriff K.A.I., Hariharan V., Kumar B.M. Review on condition monitoring of rotating machines // International journal of scientific and technology research. 2020. 9 (2). P. 2343-2346.
  16. Sayar H., Azadi M., Alizadeh M. Detection of Crack Initiation and Propagation in Aluminum Alloy Under Tensile Loading, Comparing Signals Acquired by Acoustic Emission and Vibration Sensors // Journal of Nondestructive Evaluation. 2019. V. 38. P. 100.
  17. Ibarra-Zarate D., Tamayo-Pazos O., Vallejo-Guevara A. Bearing fault diagnosis in rotating machinery based on cepstrum pre-whitening of vibration and acoustic emission // The International Journal of Advanced Manufacturing Technology. 2019. 104. P. 4155-4168.
  18. Дробот Ю.Б., Лазарев А.М. Неразрушающий контроль усталостных трещин акустико-эмиссионным методом. М.: Изд-во стандартов, 1987. 128 с.
  19. Дробот Ю.Б., Лазарев А.М. Некоторые особенности сигналов акустической эмиссии от трения берегов трещин // Дефектоскопия. 1981. № 9. С. 6-10.
  20. Lumb R., Wayne S., Qi G. Analysis of Fatigue Damage Information Obtained from Acoustic Emission Data // Data-Enabled Discovery and Applications. 2020. V. 4. P. 1.
  21. Zhu X.-Y., Chen X.-D., Dai F. Mechanical Properties and Acoustic Emission Characteristics of the Bedrock of a Hydropower Station under Cyclic Triaxial Loading // Rock Mechanics and Rock Engineering. 2020. No. 53. Р. 5203-5221.
  22. Carboni M., Crivelli D. An acoustic emission based structural health monitoring approach to damage development in solid railway axles // International Journal of Fatigue. 2020. V. 139. P. 105753.
  23. Jiang P., Sun W., Li W., Wang H., Liu C. Extreme-Low-Speed Heavy Load Bearing Fault Diagnosis by Using Improved RepVGG and Acoustic Emission Signals // Sensors. 2023. V. 23. P. 3541.
  24. Ma W., Shen H., Xu G. Study on cracks and process improvement for case hardened gear shaft straightening // Journal of Mechanical Science and Technology. 2022. V. 36 (6). Р. 2861-2870.
  25. Zhang X., Wang K., Wang Y., Shen Y., Hu H. Rail crack detection using acoustic emission technique by joint optimization noise clustering and time window feature detection // Applied Acoustics. 2020. V. 160. P. 107141.
  26. Lazarev S., Mozgovoi A., Vinogradov A., Lazarev A., Shedov A. Electromagnetic method of elastic wave excitation for calibration of acoustic emission sensors and apparatus // Journal of Acoustic Emission. 2009. No. 27. P. 212-223.
  27. Iziumova A.Y., Vshivkov A.N., Prokhorov A.E., Panteleev I.A., Mubassarova V.A., Plekhov O.A., Linderov M.L., Merson D.L., Vinogradov A.Yu. Heat dissipation and acoustic emission features of titanium alloys in cyclic deformation mode // Acta Mechanica. 2021. V. 232 (5). P. 1853-1861.
  28. Bekher S.A., Popkov A.A. Applying impact loading for revealing cracks in glass by acoustic emission method // Russian Journal of Nondestructive Testing. 2018. V. 54 (11). P. 741-747.
  29. Бехер С.А., Попков А.А. Временные характеристики потока сигналов акустической эмиссии при развитии трещин в стекле при ударном нагружении // Вестник ИжГТУ имени М.Т. Калашникова. 2019. Т. 22 (1). С. 62-71.
  30. Chen Y., Gou B., Yuan B., Ding X., Sun J., Salje E.K.H. Multiple Avalanche Processes in Acoustic Emission Spectroscopy: Multibranching of the Energy-Amplitude Scaling // Physica Status Solidi. B. 2022. V. 259 (3). P. 2100465.
  31. Kamel S.M., Samy N.M., Tóth L.Z., Daróczi L., Beke D.L. Denouement of the Energy-Amplitude and Size-Amplitude Enigma for Acoustic-Emission Investigations of Materials // Materials. 2022. V. 15. P. 4556.
  32. Rastegaev I.A., Merson D.L., Rastegaeva I.I., Vinogradov A.Yu. A time-frequency based approach for acoustic emission assessment of sliding wear // Lubricants. 2020. V. 8. No. 5. P. 52.

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies