Применение метода акустической эмиссии для ранжирования цапф сушильных цилиндров картоно- и бумагоделательных машин по усталостной поврежденности их материала

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

На примере оценки технического состояния цапф сушильных цилиндров картоноделательных машин (КДМ) обсуждается вопрос возможности ранжирования циклически нагруженных элементов динамического оборудования по степени поврежденности их материала усталостными трещинами с применением данных акустико-эмиссионных (АЭ) измерений. В результате специальных лабораторных исследований с варьированием нагрузки в цикле нагружения и смазывания берегов трещины установлены особенности АЭ от трения берегов трещины и пластической деформации в вершине трещины при ее росте в вязком материале. Показано, что при циклическом нагружении материала сигналы АЭ от трения ее берегов обнаруживаются более устойчиво, чем сигналы АЭ от скачка трещины при приращении ее длины, и что отслеживание первых обеспечивает обнаружение усталостной поврежденности материала даже в условиях нагружения, недостаточных для прироста трещин. На основании полученных данных разработаны три признака АЭ наличия усталостной поврежденности материала элементов динамического оборудования при условии циклической активации движения берегов трещины. В результате промышленной апробации разработанных признаков АЭ подтверждена их работоспособность и уточнены их граничные значения на эксплуатирующихся цапфах сушильных цилиндров КДМ, а также предложена методика ранжирования цапф по уровню поврежденности усталостными трещинами. Путем сопоставления результатов измерений АЭ с ультразвуковым контролем оценена достоверность предложенного подхода, которая показала вероятность обнаружения усталостной трещины в цапфах сушильных цилиндров КДМ на уровне 71 %, при вероятности их пропуска и перебраковки изделия 12 и 17 % соответственно. Разработанная методика переносима и на другое массивное динамическое оборудование после уточнения граничных значений признаков АЭ усталостной поврежденности материала на данном типе объекта.

Об авторах

И. А Растегаев

Тольяттинский государственный университет

Email: rastigaev@yandex.ru
Тольятти, Россия

А. К Хрусталев

Тольяттинский государственный университет

Тольятти, Россия

А. В Данюк

Тольяттинский государственный университет

Тольятти, Россия

М. А Афанасьев

Тольяттинский государственный университет

Тольятти, Россия

Д. Л Мерсон

Тольяттинский государственный университет

Тольятти, Россия

Д. В Севастьянов

Филиал АО «Группа «ИЛИМ»

Коряжма, Россия

С. В Мелентьев

Филиал АО «Группа «ИЛИМ»

Коряжма, Россия

А. Д Плюснин

ООО «Прикамский картон»

Пермь, Россия

Список литературы

  1. Коряковская Н.В., Бедердинова О.И. Контроль и регулирование влажности бумажного полотна // Известия вузов. Лесной журнал. 2022. № 1. С. 188-204.
  2. Ягуткин В.А., Илюшин В.В. Опыт восстановления цапф сушильных цилиндров методом наплавки // Леса России и хозяйство в них. 2013. № 1 (44). С. 195-198.
  3. Сиваков В.П., Микушина В.Н. Диагностирование технического состояния сушильных цилиндров бумагоделательных машин по температуре // Современные проблемы науки и образования. 2014. № 4. 8 с.
  4. Сиваков В.П., Музыкантова В.И., Вихарев С.Н., Мишин С.А. Обоснование технического обслуживания оборудования целлюлозно-бумажного производства диагностированием // Известия вузов. Лесной журнал. 2009. № 3. С. 118-125.
  5. Chen X., Wang S., Qiao B., Chen Q. Basic research on machinery fault diagnostics: Past, present, and future trends // Frontiers of Mechanical Engineering. 2018. No. 13. P. 264-291.
  6. Kushwaha N., Patel V. N. Modelling and analysis of a cracked rotor: a review of the literature and its implications // Archive of Applied Mechanics. 2020. No. 90. P. 1215-1245.
  7. Иванов В.И., Барат В.А. Акустико-эмиссионная диагностика. М.: Спектр, 2017. 368 с.
  8. Буденков Г.А., Недзвецкая О.В. Динамические задачи теории упругости в приложении к проблемам акустического контроля и диагностики. М.: Издательство физико-математической литературы, 2004. 136 с.
  9. Barat V., Marchenkov A., Ushanov S., Bardakov V., Elizarov S. Investigation of Acoustic Emission of Cracks in Rails under Loading Close to Operational // Applied Sciences. 2022. 12 (22). P.11670.
  10. Carrasco Á., Méndez F., Leaman F., Vicuña C. Short Review of the Use of Acoustic Emissions for Detection and Monitoring of Cracks // Acoustics Australia. 2021. No. 49. P. 273-280.
  11. Keshtgar A., Sauerbrunn C. M., Modarres M. Structural Reliability Prediction Using Acoustic Emission-Based Modeling of Fatigue Crack Growth // Applied Sciences. 2018. No. 8. P. 1225.
  12. Andreev K., Shetty N., Verstrynge E. Acoustic emission based damage limits and their correlation with fatigue resistance of refractory masonry // Construction and Building Materials. 2018. No. 165. P. 639-646.
  13. Elizarov S.V., Barat V.A., Terentyev D.A., Kostenko P.P., Bardakov V.V., Alyakritsky A.L., Koltsov V.G., Trofimov P.N. Acoustic Emission Monitoring of Industrial Facilities under Static and Cyclic Loading // Applied Sciences. 2018. No. 8. P. 1228.
  14. Ono K. Structural Health Monitoring of Large Structures Using Acoustic Emission - Case Histories // Applied Sciences. 2019. 9 (21). 4602.
  15. Sheriff K.A.I., Hariharan V., Kumar B.M. Review on condition monitoring of rotating machines // International journal of scientific and technology research. 2020. 9 (2). P. 2343-2346.
  16. Sayar H., Azadi M., Alizadeh M. Detection of Crack Initiation and Propagation in Aluminum Alloy Under Tensile Loading, Comparing Signals Acquired by Acoustic Emission and Vibration Sensors // Journal of Nondestructive Evaluation. 2019. V. 38. P. 100.
  17. Ibarra-Zarate D., Tamayo-Pazos O., Vallejo-Guevara A. Bearing fault diagnosis in rotating machinery based on cepstrum pre-whitening of vibration and acoustic emission // The International Journal of Advanced Manufacturing Technology. 2019. 104. P. 4155-4168.
  18. Дробот Ю.Б., Лазарев А.М. Неразрушающий контроль усталостных трещин акустико-эмиссионным методом. М.: Изд-во стандартов, 1987. 128 с.
  19. Дробот Ю.Б., Лазарев А.М. Некоторые особенности сигналов акустической эмиссии от трения берегов трещин // Дефектоскопия. 1981. № 9. С. 6-10.
  20. Lumb R., Wayne S., Qi G. Analysis of Fatigue Damage Information Obtained from Acoustic Emission Data // Data-Enabled Discovery and Applications. 2020. V. 4. P. 1.
  21. Zhu X.-Y., Chen X.-D., Dai F. Mechanical Properties and Acoustic Emission Characteristics of the Bedrock of a Hydropower Station under Cyclic Triaxial Loading // Rock Mechanics and Rock Engineering. 2020. No. 53. Р. 5203-5221.
  22. Carboni M., Crivelli D. An acoustic emission based structural health monitoring approach to damage development in solid railway axles // International Journal of Fatigue. 2020. V. 139. P. 105753.
  23. Jiang P., Sun W., Li W., Wang H., Liu C. Extreme-Low-Speed Heavy Load Bearing Fault Diagnosis by Using Improved RepVGG and Acoustic Emission Signals // Sensors. 2023. V. 23. P. 3541.
  24. Ma W., Shen H., Xu G. Study on cracks and process improvement for case hardened gear shaft straightening // Journal of Mechanical Science and Technology. 2022. V. 36 (6). Р. 2861-2870.
  25. Zhang X., Wang K., Wang Y., Shen Y., Hu H. Rail crack detection using acoustic emission technique by joint optimization noise clustering and time window feature detection // Applied Acoustics. 2020. V. 160. P. 107141.
  26. Lazarev S., Mozgovoi A., Vinogradov A., Lazarev A., Shedov A. Electromagnetic method of elastic wave excitation for calibration of acoustic emission sensors and apparatus // Journal of Acoustic Emission. 2009. No. 27. P. 212-223.
  27. Iziumova A.Y., Vshivkov A.N., Prokhorov A.E., Panteleev I.A., Mubassarova V.A., Plekhov O.A., Linderov M.L., Merson D.L., Vinogradov A.Yu. Heat dissipation and acoustic emission features of titanium alloys in cyclic deformation mode // Acta Mechanica. 2021. V. 232 (5). P. 1853-1861.
  28. Bekher S.A., Popkov A.A. Applying impact loading for revealing cracks in glass by acoustic emission method // Russian Journal of Nondestructive Testing. 2018. V. 54 (11). P. 741-747.
  29. Бехер С.А., Попков А.А. Временные характеристики потока сигналов акустической эмиссии при развитии трещин в стекле при ударном нагружении // Вестник ИжГТУ имени М.Т. Калашникова. 2019. Т. 22 (1). С. 62-71.
  30. Chen Y., Gou B., Yuan B., Ding X., Sun J., Salje E.K.H. Multiple Avalanche Processes in Acoustic Emission Spectroscopy: Multibranching of the Energy-Amplitude Scaling // Physica Status Solidi. B. 2022. V. 259 (3). P. 2100465.
  31. Kamel S.M., Samy N.M., Tóth L.Z., Daróczi L., Beke D.L. Denouement of the Energy-Amplitude and Size-Amplitude Enigma for Acoustic-Emission Investigations of Materials // Materials. 2022. V. 15. P. 4556.
  32. Rastegaev I.A., Merson D.L., Rastegaeva I.I., Vinogradov A.Yu. A time-frequency based approach for acoustic emission assessment of sliding wear // Lubricants. 2020. V. 8. No. 5. P. 52.

© Российская академия наук, 2023

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах