PROPAGATION AND SCATTERING OF ULTRASONIC WAVES IN MEDIA WITH MICROPORES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ultrasound investigations of the samples of the steam pipe elbow containing micro flaws have been performed, cut at different distances from the crack that appeared as a result of long-term operation. Changes in the velocities of longitudinal acoustic waves are determined depending on the porosity of the samples. The parameters of acoustic noise caused by multiple scattering of waves on microdefects in the samples are investigated. It is shown that the width of an estimated distribution of the probability density function of instantaneous values of an acoustic noise signal can be used as an informative parameter for microdamage ultrasonic monitoring of a medium. At the same time, accurate measurement of the velocity of ultrasonic wave is not required. Acoustic noise measurements can be performed using standard ultrasonic flaw detectors

About the authors

Anatoly B. Rinkevich

M.N. Mikheev Institute of Metal Physics UB RAS

Email: rin@imp.uran.ru
Russian Federation, 620108 Ekaterinburg, S. Kovalevskaya St., 18

Dmitry V. Perov

M.N. Mikheev Institute of Metal Physics UB RAS

Author for correspondence.
Email: peroff@imp.uran.ru
ORCID iD: 0000-0002-3785-4881
SPIN-code: 8906-5540
Scopus Author ID: 6603756499
ResearcherId: D-4415-2013
https://www.imp.uran.ru/?q=ru/user_card&sotrudnik=1529

Ph.D., senior scientist, laboratory of quantum nanospintronics

Russian Federation, 620108 Ekaterinburg, S. Kovalevskaya St., 18

Yulia Vladimirovna Korkh

M.N. Mikheev Institute of Metal Physics UB RAS

Email: korkh@imp.uran.ru
Russian Federation, 620108 Ekaterinburg, S. Kovalevskaya St., 18

References

  1. Papadakis E. Ultrasonic attenuation and velocity in three transformation products in steels // J. Appl. Phys. 1964. V. 35. No. 5. P. 1474—1482.
  2. Papadakis E.P. Ultrasonic attenuation caused by scattering in polycrystalline media / In Physical Acoustics. Ed. by W. Mason. V. IVB. New York, London: Academic Press, 1968. P. 269—328.
  3. Truell R., Elbaum C., Chick B.B. Ultrasonic methods in solid state physics. New York, London: Academic Press, 1969. 464 p.
  4. Muraviev V.V., Zuev L.B., Komarov K.L. The ultrasound velocity and structure of steels and alloys. Novosibirsk: Nauka. Siberian publishing firm RAN, 1996. 184 p. (In Russian).
  5. Munro R.G. Analytical representations of elastic moduli data with simultaneous dependence on temperature and porosity // J. Res. Natl. Inst. Stand. Technol. 2004. V. 109. P. 497—503.
  6. Partalin T., Ivanova Y., Popov Al. Modelling of acoustic wave attenuation in polycrystalline structure // J. Mater. Sci. Technol. 1998. V. 6. No. 4.
  7. Ivanova Y., Partalin T., Tabakova D. Non-destructive ultrasonic investigation of the structure state of steam pipelines // Rus. J. Nondestr. Test. 2011. V. 47. No. 1. P. 57—64.
  8. Mishakin V.V., Sergeeva O.A., Klyushnikov V.A. The influence of microdamage on the elastic characteristics of metastable austenitic steels under fatigue // Technical Physics. 2024. V. 69. No. 1. P. 56—61.
  9. Kirikov S.V., Mishakin V.V., Klyushnikov V.A. Influence of microcracks on Poisson’s ratio during plastic deformation of austenitic steel // Technical Physics. 2022. V. 67. No. 3. P. 312—319.
  10. Smirnov A.N., Vasilyev A.G., Shevelev E.V. Assessment of the degree of damage to long-term working metal of power equipment by acoustic method // Bulletin of the Kuzbass State Technical University. 2000. No. 5 (18). P. 46—50. (In Russian).
  11. Smirnov A.N., Khaponen N.A., Chelyshev A.N., Medvedev S.N. Assessment of the condition of long-term working metal of technical devices of hazardous production facilities by acoustic method // Occupational Safety in Industry. 2004. No. 3. P. 28—31. (In Russian).
  12. GOST (State Standard) R 58177—2018: United power system and isolated power systems. Thermal power plants. Thermal-mechanical equipment of thermal power plants. Control of condition of metal. Norms and requirements. (In Russian).
  13. Gofman Yu.M., Permikin V.S., Filippov A.M. Methods for assessing the condition of superheated steam pipelines that have exhausted their resource / Proceedings of the Conference “Resource, reliability and safety of thermal equipment of power plants”. Moscow: VTI, 2011. P. 105—109. (In Russian).
  14. Zalazinsky A.G., Byvaltsev S.V. A software package for the implementation of an experimental and analytical method for modeling the processes of deformation of metal workpieces // Herald of computer and information technologies. 2006. No. 11. P. 46–51. (In Russian).
  15. Arutyunyan A.R., Arutyunyan R.A., Saitova R.R. Determination of the damage parameter from experimental curves of high-temperature creep / Mechanics and modeling of materials and technologies. Proceedings of the Section of the International Youth Scientific Conference «XLVI Gagarin Science Conference». M.: IPMech RAS, 2020. P. 6. (In Russian).
  16. Afanasiev A.S., Vyashchenko Yu.L., Ivanov K.M., Mityushov A.A. System and information support of reliability of thermal power complexes. Saint-Petersburg: BSTU, 2014. 230 p. (In Russian).
  17. Smirnov A.N., Ababkov N.V., Oshchepkov N.F., Rakhmatullin R.Z. Assessment of the resource of long-term metal of fuel and energy complex equipment based on structural criteria // Welding and Diagnostics 2015. No. 5. P. 9—12. (In Russian).
  18. Shuvalov S.I., Mitushov A.A. Prediction of bends state by using residual deformation // Vestnik IGEU. 2011. No. 2. P. 1—4. (In Russian).
  19. Tolksdorff E., Hald J. Experimental methods of determining the creep and fatigue characteristics of equipment of power plants / In: Extension of lifetime of thermal power plants. Moscow: VTI, 1994. (In Russian).
  20. Permikin V.S. Diagnostics of creep of heat-resistant steels on the basis of measurements of the ultrasonic wave velocity in nondestructive testing of energy equipment: I. Probes and tools for measuring the velocity of ultrasound // Defectoskopiya. 2004. No. 1. P. 46—58.
  21. Permikin V.S. Diagnostics of creep in heat-resistant steels: II. Calculation of residual life of metal that functions under creep conditions based on the results of testing for operational microdamage // Defectoskopiya. 2011. No. 3. P. 66—73.
  22. Barkhatov B.V., Permikin V.S. Method of Ultrasonic Testing of the State of Metal Operating under Creep Conditions, Prediction of its Residual Lifetime and an Acoustic Unit for its Realization (Variants) / Patent RF no. 2177612, 01.09.1999 (RU 2177612, C2, G01, no. 29/18).
  23. Smirnov A.N., Ababkov N.V., Glinka A.S., Pimonov M.V., Logov A.B. Analysis of physical and mechanical parameters of the power equipment long-term metal condition // Strengthening Technologies and Coatings 2011. No. 11. P. 40—48. (In Russian).
  24. Yang L., Turner J.A. Scattering of elastic waves in damaged media // J. Acoust. Soc. Am. 2003. V. 113. No. 6. P. 2092—3000.
  25. Permikin V.S., Perov D.V., Rinkevich A.B. Acoustic noise in 12KhMF-grade steel containing micropores // Defectoskopiya. 2004. No. 2. P. 14—28.
  26. Zhitlukhina Yu.V., Perov D.V., Rinkevich A.B., Permikin V.S. Detection of Microflaws in Metals via Investigation of Acoustic Fields // Defectoskopiya. 2007. No. 10. P. 26—40.
  27. Korkh Yu.V., Burkhanov A.M., Rinkevich A.B. Scanning acoustic microscope for visualization of microflaws in solids // Defectoskopiya. 2009. No. 10. P. 16—26.
  28. Perov D.V., Rinkevich A.B. Using wavelets for analyzing ultrasonic fields detected by a laser interferometer. Basic concepts of the wavelet analysis // Defectoskopiya. 2001. No. 12. P. 55—66.
  29. Perov D.V., Rinkevich A.B., Smorodinskii Ya.G. Wavelet filtering of signals from ultrasonic flaw detector // Defectoskopiya. 2002. No. 12. P. 3—20.
  30. Rinkevich A.B., Perov D.V. A wavelet analysis of acoustic fields and signals in ultrasonic nondestructive testing // Defectoskopiya. 2005. No. 2. P. 43—54.
  31. Ventsel E.S. The probability theory. Moscow.: Nauka, 1969. 576 p. (In Russian).
  32. Vukolov E.A. Statistical methods for processing experiments and their implementation on a computer. Moscow: MIET, 1984. 110 p. (In Russian).
  33. Scott D.W. Sturges’ rule // WIREs Comp. Stats. 2009. V. 1. No. 3. P. 303—306.
  34. Levin B.R. Theoretical foundations of statistical radio engineering. Moscow: Radio and Communications, 1989. 656 p. (In Russian).
  35. Tikhonov V.I. Statistical radio engineering. Moscow: Radio and Communications, 1982. 624 p. (In Russian).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).