A NEW METHOD WITH NON-DESTRUCTIVE DIAGNOSTICS FOR DETERMINING INTERNAL DEFECTS IN SILICON VIDEOCON TARGETS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The necessity of developing new methods for non-destructive testing of silicon targets structure and detection of internal defects in them is substantiated. It is established that a number of internal defects are not identified by the methods used for testing targets (these defects appear only during vidicon operation). For the targets, a study of the substrate structure and the formed topology, as well as the surface of the photosensitive elements, was carried out using X-ray diffractometry and a developed optical microscope with the formation of a diffraction image. Substrate deformation was established, which led to the formation of mechanical stresses with an increase in the concentration of charge carrier generation centers. A significant violation of the (111) orientation in the structure of the Si target substrate was detected. A new result was obtained that explains the formation of white illumination in the recorded images during vidicon testing and two reasons for the formation of an internal defect in the target, which led to its appearance, were established. Uneven impact along the edges of the target when pressing it on the indium ring and uneven application of layers during the manufacture of its structure. A new non-destructive method of testing silicon targets has been developed to detect this internal defect and others during their manufacture before installation in the vidicon. A number of measures have been proposed to eliminate these defects during the implementation of the technological process

About the authors

Vadim Davydov

Peter the Great St. Petersburg Polytechnic University; St. Petersburg State Electrotechnical University “LETI”

Author for correspondence.
Email: davydov_vadim66@mail.ru
ORCID iD: 0000-0001-9530-4805
SPIN-code: 7618-4840
Scopus Author ID: 7201851532
ResearcherId: F-1794-2016

д.ф.-м.н., профессор, ИММиТ

Russian Federation, 195251 Saint Petersburg, Politechnicheskaya Str., 29; 197022 Saint Petersburg, str. Professor Popov, 5

Anastasia Sokolova

JSC Central Research Institute Electron

Email: nansokol@list.ru
Russian Federation, 194223, Saint Petersburg, Torez Avenue, 68 lit. R

Valentina Andreeva

Peter the Great St. Petersburg Polytechnic University

Email: avd2007@bk.ru
Russian Federation, 195251 Saint Petersburg, Politechnicheskaya Str., 29

Sergey Kotov

Peter the Great St. Petersburg Polytechnic University

Email: serkotov51@mail.ru
Russian Federation, 195251 Saint Petersburg, Politechnicheskaya Str., 29

Sergey Ganin

Peter the Great St. Petersburg Polytechnic University

Email: s.v.ganin@gmail.com
Russian Federation, 195251 Saint Petersburg, Politechnicheskaya Str., 29

Artem Kim

Peter the Great St. Petersburg Polytechnic University

Email: artem_7.kim@mail.ru
Russian Federation, 195251 Saint Petersburg, Politechnicheskaya Str., 29

References

  1. Xu Q., Hill A., Zhang H.D., Roncarolo F., Trad G. Estimation of beam transverse parameters through a multimode fiber using deep learning // Proceedings of the International Beam Instrumentation Conference Ibic. 2024. P. 170—173.
  2. Picollo M., Cucci C., Casini A., Stefani L. Hyper-spectral imaging technique in the cultural heritage field: New possible scenarios // Sensors. 2020. V. 20. No. 10. P. 2843.
  3. Kolesnikova D.V. Image processing system for vidicon-based radiation-resistant cameras // Proceedings of SPIE the International Society for Optical Engineering. 2020. V. 1135311. P. 11353.
  4. Zaynobidinov S., Babakhodzhayev U., Nabiyev A., Sharibayev N.Y. The mechanism of hole transport in photocells based on A-Si: H // International Journal of Scientific and Technology Research. 2020. V. 9. No. 1. P. 2589—2593.
  5. Thompson S.M. Dancing lights the use of television cameras to measure and study aurorae // Journal of Astronomical History and Heritage. 2024. V. 27. No. 4. P. 859—870.
  6. Wang S., Huang X., Wang B., Peng T., Bu C. Nondestructive Detection of Mechanical Damages in Apples Using Pulsed Infrared Thermography // Defectoskopiya. 2025. No. 5. P. 51—61.
  7. Ding W., Ma Y., Zhang J. Remote monitoring and control system for aquarium based on mobile communication platform // IFIP Advances in Information and Communication Technology. 2019. V. 545. P. 462—467.
  8. Davydov V.V., Porfir’eva E.V., Davydov R.V. Nondestructive Method for Testing Elasticity of Walls of Human Veins and Arteries // Defectoskopiya. 2022. No. 9. P. 56—67.
  9. Tanioka K., Ando T., Sugawara M. Camera technology / Handbook of Optoelectronics. Second Edition. Enabling Technologies. 2017. V. 2. P. 97—112.
  10. Kovtonyuk N.F., Misnik V.P., Sokolov A.V., Tumanov V.L. Photosensitivity of vidicons with semiconductor-on-insulator-based phototargets // Journal of Communications Technology and Electronics. 2005. V. 50. No. 12. P. 1409—1412.
  11. Basak S., Ferrone F.A. Numerical linearization of a silicon intensified target vidicon response // Review of Scientific Instruments. 1988. V. 59. No. 8. P. 1423—1425.
  12. Matsuura H. Hydrogenated Amorphous-Silicon/Crystalline-Silicon Heterojunctions: Properties and Applications // IEEE Transactions on Electron Devices. 1989. V. 36. No. 12. P. 2908—2914.
  13. Uchida Teruo, Itoh Seiji, Coleman David M., Minami Shigeo. Corrected performance of SIT vidicons exposed to transient radiation // Applied Spectroscopy. 1990. V. 44. No. 3. P. 391—396.
  14. Zhao Y., Wang H., Zhang Q., Xie Y., Yang J. A study of landslide deformation field with digital correlation method // Chinese Science Bulletin. 2016. V. 61. No. 28—29. P. 3163—3171.
  15. Thorpe L.J. The SMPTE Century: Evolution in Cameras and Lenses from 1916 to 2016 // SMPTE Motion Imaging Journal. 2016. V. 125. No. 6. P. 41—48.
  16. Iureva R.A., Maltseva N.K., Dunaev V.I. Formation of the color image based on the vidicon TV camera // Proceedings of SPIE the International Society for Optical Engineering. 2016. V. 9947. P. 99470M.
  17. Zhang B.-P., Han S. A research of Vidicon Acquiring Image Adaptive Control System Based on locomotor Vehicle // Proceedings 2nd IEEE International Conference on Advanced Computer Control Icacc 2010. 2010. V. 5487150. P. 484—487.
  18. Zhou Y., Sun H., Gao S., Niu S. Videometrics-based Detection of Vibration Linearity in MEMS Gyroscope // International Journal of Computational Intelligence Systems. 2011. V. 4. No. 3. P. 321—328.
  19. Batra A.K., Edwards M.E., Guggilla P., Aggarwal M.D., Lal R.B. Pyroelectric properties of PVDF:MWCNT nanocomposite film for uncooled infrared detectors and medical applications // Integrated Ferroelectrics. 2014. V. 158. No. 1. P. 98—107.
  20. Wang J., Ao Q., Ma J., Chen X., Jiang L. Quasi-static compressive performance of porous stainless steel fiber materials // Journal of Functional Materials. 2018. V. 49. No. 9. P. 9107—9114.
  21. Samoylov V.B., Shchedrina L.V. Cyclostationary mode of pyroelectric sensor // Sensors and Actuators A Physical. 2018. V. 282. P. 142—148.
  22. Dan J.-Q., Ma G.-H., Jiang S.-P., Han L.-B. Research on the real-time location of the battlefield target reconnaissance based on the single-vidicon // Optical Technique. 2008. V. 34. No. 1. P. 100—104.
  23. Shao L., Yang D., Li B., Li K., Lian X. Development of acoustic vidicon based on binocular vision and microphone array // Journal of Scientific Instrument. 2009. V. 30. No. 4. P. 823—827.
  24. Kavandi J., Callis J., Gouterman M., Burns D., McLachlan B. Luminescent barometry in wind tunnels // Review of Scientific Instruments. 1990. V. 61. No. 11. P. 3340—3347.
  25. Liu Y., Zhang J., Dai S. CCD vidicon image processing simulation // Journal of Beijing University of Aeronautics and Astronautics. 2009. V. 35. No. 12. P. 1455—1458.
  26. Shahriar A.N.M., Hyde R., Hayman S. Wide-angle image analysis for sky luminance measurement // Architectural Science Review. 2009. V. 52. No. 3. P. 211—220.
  27. Schauer F., JedličKa M., KočKa J. Beam Profiling Characteristics of a Sensitivity-Enhanced Silicon Vidicon System at 1.06 Microns // ASTM Special Technical Publication. 1988. V. STP 1015. P. 44—52.
  28. Mimura H., Hatanaka Y. Optoelectrical properties of amorphous-crystalline silicon heterojunctions // Applied Physics Letters. 1984. V. 45. No. 4. P. 452—454.
  29. Hofstein S.R. A Silicon Vidicon Target with Electronically Variable Light Sensitivity and Spectral Response // IEEE Transactions on Electron Devices. 1968. V. 15. No. 12. P. 1018—1023.
  30. Uvin D.S.,Kutergin A.V., Cherosov M.A., Spirin K.E., Vasilenko O.N., Batulin R.G. Non-destructive testing of the PPMS-9 dewar vessel using a mass-spectrometric method // Defectoskopiya. 2025. No. 9. P. 69—78.
  31. Daveri A., Vagnini M., Nucera F., Romani A., Clementi C. Visible-induced luminescence imaging: A user-friendly method based on a system of interchangeable and tunable LED light sources // Microchemical Journal. 2016. V. 125. P. 130—141.
  32. Shirshin A.V., Fedorov A.V., Zheleznyak I.S., Peleshok S.A. Application of Texture Filtering in Clustering of X-ray Computed Tomography Data of Products Made from Polymer Composite Materials // Defectoskopiya. 2025. No. 5. P. 62—67.
  33. Bozhenko V., Kondratov P., Shkljarskij V. Thermovision camera with discrete reversal scanning of PEMET vidicon target // Proceedings of the International Conference 2008 Modern Problems of Radio Engineering Telecommunications and Computer Science. 2008. V. 54235366. P. 242—243.
  34. Taylor P.C. World scientific reference of amorphous materials, the: Structure, properties, modeling and main applications (in 3 volumes). 2020. 472 p.
  35. Wang S.-Y., Zhuo L., Shen L.-S., Li X.-G. A simple and effective video sequence super-resolution algorithm // Journal of Beijing University of Technology. 2009. V. 35. No. 6. P. 742—747.
  36. Tang Q., Fang B., Gu Z., Vavilov V.P., Chulkov A.O., Xu G., Wang Z., Bu H. Infrared Thermal Imaging Detection and Image Segmentation of Micro-Crack Defects in Semiconductor Silicon Wafer Scanned by Laser // Defectoskopiya. 2025. No. 4. P. 52—68.
  37. Gregorkiewitz M., Boschetti A. Lattice symmetry relaxation as a cause for anisotropic line broadening and peak shift in powder diffraction // Acta Crystallographica Section A Foundations and Advances. 2024. V. 80. P. 439–445.
  38. Kishin I.A., Kidanova E.Y., Kubankin A.S., Sotnikova V.S. Soft X-ray Based Quality Control Technique for Structural Elements Made of Lightweight Materials // Defectoskopiya. 2023. No. 10. P. 43—52.
  39. Davydov V.V., Myazin N.S., Davydova T.I. A nondestructive method for express testing of condensed media in ecological monitoring // Defectoskopiya. 2017. No. 7. P. 52—61.
  40. Shevchenko D.V., Provodin D.S., Davydov V.V. Development of a compact high-resoluyion digital microscope for the research of micro and nanostructures // St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2023. V. 16. No. S3.1. P. 396—401.
  41. Zayed M.M., Bakr E.A., Abu-Youssef M.A.M., Soliman S.M., Yousri A. Synthesis of copper(II) and cobalt(II) complexes with bidentate s-triazine ligand bearing pyrazolyl moiety; X-ray structural studies and antimicrobial evaluation // Journal of Molecular Structure. 2025. V. 1348. P. 143453.
  42. Kuschel S., Ho P.J., Al Haddad A., Marinelli A., Gorkhover T. Non-linear enhancement of ultrafast X-ray diffraction through transient resonances // Nature Communications. 2025. V. 16. No. 1. P. 847.
  43. Umansky Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N. Crystallography, X-ray diffraction and electron microscopy. Publishing house M.: Metallurgy (in Russia), 1982. 632 p.
  44. Jagadeesha Angadi V., Kubrin S., Sayed M.A., Longo E., Basavegowda N. Structural and magnetic modulations in α-Fe2O3 ceramic nanoparticles: A multifaceted study with DFT calculations // Ceramics International. 2025. V. 51. No. 21. P. 33407–33414.
  45. Kipgen F., Singh L.R., Saikia P.J., Devi S.R., Hussain M.A. X-ray diffraction line profile analysis of nanocrystalline PbSe thin film prepared at different pH value by chemical bath deposition technique // Next Materials. 2025. V. 9. P. 101009.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2026 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).