CONTROL OF THE TECHNICAL CONDITION OF REINFORCED CONCRETE PRODUCTS AND STRUCTURES BY THE METHOD OF ACOUSTIC-ELECTRIC TRANSFORMATIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article discusses the possibility of using the acoustic-electrical transformation method to detect cracks and mechanical compressive strength of concrete. Numerical and experimental studies of changes in the parameters of the electromagnetic response of model samples of concrete made of a cement-sand mixture with a crack to a deterministic pulsed acoustic impact are presented. It is shown that the presence of a crack is determined by changes in the amplitude-frequency parameters of the electromagnetic response from the sample. An example of determining the locations of weakening of the mechanical strength of a concrete construction beam based on the parameters of electromagnetic signals is given. The results of comparative tests for determining the mechanical compressive strength of concrete, obtained using a calibrated sclerometer and an acoustoelectric method, are shown. The results of monitoring the mechanical strength of concrete structures of an operating bridge crossing over a river are also presented based on the parameters of the electromagnetic response that arise during impact probing with acoustic pulses

About the authors

Vasily F Gordeev

Institute of Monitoring of Climatic and Ecological Systems SB RAS

Author for correspondence.
Email: gordeev_vasiliy_tomsk@mail.ru
Russian Federation, 634025 Tomsk, Academic Avenue, 10/3

A A Bespal'ko

Tomsk State University of Control Systems and Radioelectronics

Email: besko48@tpu.ru
Russian Federation, 634050 Tomsk, Lenin Avenue, 40

C. G. Stalin

Tomsk State University of Control Systems and Radioelectronics

Email: sersh1965@gmail.com
Russian Federation, 634050 Tomsk, Lenin Avenue, 40

Sergey Yu. Malyshkov

Institute of Monitoring of Climatic and Ecological Systems SB RAS

Email: msergey@imces.ru
Russian Federation, 634025 Tomsk, Academic Avenue, 10/3

Luo Junhua

Tomsk Polytechnic University, Russia

Email: lulubvv@foxmail.com
Russian Federation, 634050 Tomsk, Lenin Avenue, 30

References

  1. Lysett Tim. Everything You Need тo Know About Concrete Strength (Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. The standard ASTM C39 American Society for Testing & Materials). 2019.
  2. Concrete. GOST 18105-2018. Rules for control and strength assessment. Russia. Moscow: Standartinform, 2020.
  3. Physical Acoustics (edited by W.P. Mason). V. 1. New York: Academic Press, 1964. 532 р.
  4. Klyuev V.V. Non-destructive testing. Handbook in 8 volumes. Moscow: Mechanical Engineering, 2008.
  5. Murashov V.V., Generalov A.S. Control of multilayer glued structures by low-frequency acoustic // Aviation materials and technologies. 2014. No. 2. P. 59—67. doi: 10.18577/2071-9140-2014-0-2-59-67
  6. Niederleithinger Ernest, Sodeikat Christian, Epple Niklas, Liao Chun-Man and Hindersmann Iris. Acoustic Emission and Monitoring of a Prestressed Concrete Bridge in its Final Years. 2021. Conference: Eurostruct. Padua, Italy. Project: Ultrasonic monitoring of concrete constructions.
  7. Blitz J. Electrical and Magnetic Methods of Nondestructive Testing. eBook Published, 2020. 238 p. https://doi.org/10.1201/9781003062905
  8. Ida N. Numerical Modeling for Electromagnetic Non-Destructive Evaluation. New-York: Springer New-York, 2013. 511 p.
  9. Mikheev M.N., Gorkunov E.S. Magnetic methods of structural analysis and non-destructive testing. Moscow: Nauka, 1993. 266 p.
  10. Francesco Ficilli. Non-Destructive Testing by Magnetic Techniques. LAP Lambert Academic Publishing, 2012. 140 p.
  11. Kosarina E.I., Demidov A.A., Krupnina O.A., Mikhailova N.A., Smirnov A.V., Osiyanenko N.V. Non-destructive testing by digital radiography and X-ray computed tomography. Moscow: Spektr, 2025. 136 p.
  12. Arleninov P.D., Krylov S.B., Kalmakova P.S. System for monitoring the integrity of concrete in steel-reinforced concrete structures based on the thermal imaging method // Academia: Architecture and Construction. 2024. No. 2. P. 150—156. doi: 10.22337/2077-9038-2024-2-150-156
  13. Non-destructive testing (ed. by V. Sukhorukov). V. 4. Moscow: Higher School, 1992. 321 p.
  14. SP 35.13330.2011 Bridges and culverts. Russia. M.: FSUE "Standartinform". 2020.
  15. Perelman M.E., Khatiashvili N.G. On radio emission during brittle fracture of dielectrics // DAN SSSR. 1981. V. 256. No. 4. P. 824—826.
  16. Gordeev V.F., Malyshkov Yu.P., Chakhlov V.L., Baumbach H., Kaplan G., Slavik V., Birkholz V. Electromagnetic emission testing of concrete strength // Defectoscopyia. 1992. No. 7. P. 76—80.
  17. Rabinovitch A., Frid V., Goldbaum J., Bahat D. Polarization-depolarization process in glass during percussion drilling // Philosophical Magazine. 2003. V. 83. No. 25. P. 2929—2939. doi: 10.1080/1478643031000152843
  18. Lacidogna G., Carpinteri А., Manuello A., Durin G., Schiavi A., Niccolini G., Agosto A. Acoustic and electromagnetic emissions as precursor phenomena in failure processes // Strain. 2010. V. 47. P. 144—152. doi: 10.1111/j.1475-1305.2010.00750.x
  19. Miroshnichenko M.I., Kuksenko V.S. Radiation of electromagnetic pulses during crack initiation in solid dielectrics // Physics of the Solid State. 1980. V. 22. No. 5. P. 1531—1534.
  20. O’Keefe S.G., Thiel D.V. A mechanism for the production of electromagnetic radiation during fracture of brittle materials // Phys. Earth and Planet. Inter. 1995. V. 89. No.11. P.127—135.
  21. Petrenko V.F. On the nature of electrical polarization of materials caused by cracks, application to ice // Philosophical Magazine В. 1993. V. 67. No. 3. P. 301—315. doi: 10.1080/13642819308220134
  22. Yan W., Wei M., Song D., He X., Khan M., Qin M. Effects of rock pore and micromorphology on electromagnetic radiation characteristics // Journal of Applied Geophysics. 2024. V. 230. P. 105518. https://doi.org/10.1016/j.jappgeo.2024.105518
  23. Bespal’ko A.A., Surzhikov A.A., Fedotov P.I., Pomichin E.K., Stary O. Polarization and Electromagnetic Emissions of Natural Crystalline Structures upon Acoustic Excitation // Modern problems of materials processing, production, testing and quality assurance II. Scientific Journal Materials Science Forum: [Electronic resource]. 2019. V. 970. P. 153—166. doi: 10.4028/ href='www.scientific.net/MSF.970.153' target='_blank'>www.scientific.net/MSF.970.153
  24. Bespal’ko A.A., Isaev Y.N., Dann D.D., Pomishin E.K., Fedotov P.I., Petrov M.V., Utsyn G E. Transformation of Acoustic Pulses into Electromagnetic Signals in Defective Structures // Journal of Nondestructive Evaluation. 2020. V. 39. No. 4. Article No. 82. P. 1—14. doi: 10.1007/s10921-020-00727-9
  25. Mashkov Yu.K., Kropotin O.V. Tribophysics and structural modification of materials of tribosystems. Omsk: Publishing house of OmskGTU, 2009. 324 p.
  26. Sobarso Juan Carlos, Pertl Felix, Balazs Daniel M., Costanzo Tommaso, Sauer Markus, Foelske Annette, Ostermann Markus, Pichler Christian M., Wang Yongkang, Nagata Yuki, Bonn Mischa, Vaitukaitis Scott. Spontaneous ordering of identical materials into a triboelectric series // Nature. 2025. V. 638 (8051). P. 664—669. doi: 10.1038/s41586-024-08530-6. www.nature.com/articles/s41586-024-08530-6
  27. Malyshkov Yu.P., Malyshkov S.Yu., Gordeev V.F., Shtalin S.G., Polivach V.I., Krutikov V.A., Zaderigolova M.M. Earth’s Natural Electromagnetic Noises: Their Deep-Seated Origin, Effect on People, Recording and Application in Geophysics Editors: Reimer, A // Horizons in World Physics. 2015. V. 283. P. 43—128. Nova Science Publishers, ISBN: 978-163482662-4;978-163482661-7.
  28. Bespal’ko A.A., Isaev Y.N., Yavorovich L.V. Transformation of acoustic pulses into electromagnetic response in stratified and damaged structures // Journal of Mining Science. 2016. V. 52. No. 2. С. 279—285. doi: 10.1134/S1062739116020418
  29. Khatiashvili N.G. Generation of electromagnetic radiation during the passage of acoustic waves through crystalline dielectrics and some rocks // DAN SSSR. 1982. V. 263. No. 4. P. 839—842.
  30. Yamada I., Masuda K., Mizutani H. Electromagnetic and acoustic emission associated with rock fracture // Phys. Earth Planet. Int. 1989. V. 57. No. 1—2. P. 157—168.
  31. Bespal’ko A.A., Utsyn G.E., Fedotov P.I. Experimental Studies of Mechanical-Electrical Transformations during the Destructive Processes Developing in Dielectric Materials // Bulletin of the Karaganda University. “Physics” Series. 2022. No. 2 (106). P. 58—67.
  32. Ziman J.M. Principles of the Theory of Solids. London: Cambridge University Press, 1972. 435 р.
  33. Warming, R.F., Kutler, P. and Lomax, H. Second-and Third-Order Noncentered Difference Schemes for Nonlinear Hyperbolic Equations // AIAA Journal. 1973. V. 11. P. 189—196. https://doi.org/10.2514/3.50449
  34. Hemming R.V. Numerical Methods for Scientists and Engineers. RUGRAM Publishing House, YOYO Media Series, 2025. 400 p.
  35. Hoffman J.D. Numerical methods for engineers and scientists / Second edition revised and expanded. New York: Marcel Dekker, Inc., 2001. 840 р.
  36. Hairer E., Wanner G. Solving ordinary differential equations II: Stiff and differential-algebraic problems / 2nd ed. Berlin, New York: Springer—Verlag, 1996.
  37. Lyons R. Digital signal processing. Moscow: Binom, 2015. 656 p.
  38. Gan Woon Siong. Signal Processing and Image Processing for Acoustical Imaging. Springer Singapore, 2020. 83 p. https://doi.org/10.1007/978-981-10-5550-8.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).