The use of periodic laser heating and phase sensitive thermography to evaluation the thickness of coatings
- 作者: Divin A.G.1,2, Zakharov Y.A.1,2, Golovin D.Y.1, Karpova N.A.2, Tyurin A.I.1, Samodurov A.A.1, Karpov S.V.2, Rodaev V.V.1, Zakharov I.A.3
-
隶属关系:
- Tambov State University named after G. R. Derzhavin
- Tambov State Technical University
- National Research University of Electronic Technology
- 期: 编号 1 (2025)
- 页面: 68-77
- 栏目: Thermal methods
- URL: https://journals.rcsi.science/0130-3082/article/view/285918
- DOI: https://doi.org/10.31857/S0130308225010065
- ID: 285918
如何引用文章
详细
The phase-sensitive laser thermography method is highly sensitive and allows you to control the uniformity and thickness of coatings made of various materials. The use of robotic manipulators as a scanning device allows you to carefully examine the surfaces of objects of complex shape in automatic mode. The article provides information about the layout of a robotic complex for laser phase-sensitive thermography based on a five-axis robotic arm, a laser with a power of up to 8 watts and a wavelength of 450 nm, as well as a COX CG640 thermal imager. Methods of processing experimental data for determining the thickness of coatings made of materials with low thermal conductivity are proposed. To test the approach, control samples were made of aluminum oxide coated with polypropylene in the range from 40 to 500 microns. It is established that the unevenness of the coating is rationally determined by the phase distribution of temperature fluctuations with a frequency of 0,1—1 Hz.
作者简介
A. Divin
Tambov State University named after G. R. Derzhavin; Tambov State Technical University
编辑信件的主要联系方式.
Email: divin.ag@tstu.ru
俄罗斯联邦, 392036, Tambov, Internatsionalnaya str., 33; 392000, Tambov, Sovetskaya str., 106
Yu. Zakharov
Tambov State University named after G. R. Derzhavin; Tambov State Technical University
Email: divin.ag@tstu.ru
俄罗斯联邦, 392036, Tambov, Internatsionalnaya str., 33; 392000, Tambov, Sovetskaya str., 106
D. Golovin
Tambov State University named after G. R. Derzhavin
Email: divin.ag@tstu.ru
俄罗斯联邦, 392036, Tambov, Internatsionalnaya str., 33
N. Karpova
Tambov State Technical University
Email: divin.ag@tstu.ru
俄罗斯联邦, 392000, Tambov, Sovetskaya str., 106
A. Tyurin
Tambov State University named after G. R. Derzhavin
Email: nano@tsutmb.ru
俄罗斯联邦, 392036, Tambov, Internatsionalnaya str., 33
A. Samodurov
Tambov State University named after G. R. Derzhavin
Email: nano@tsutmb.ru
俄罗斯联邦, 392036, Tambov, Internatsionalnaya str., 33
S. Karpov
Tambov State Technical University
Email: nano@tsutmb.ru
俄罗斯联邦, 392000, Tambov, Sovetskaya str., 106
V. Rodaev
Tambov State University named after G. R. Derzhavin
Email: nano@tsutmb.ru
俄罗斯联邦, 392036, Tambov, Internatsionalnaya str., 33
I. Zakharov
National Research University of Electronic Technology
Email: nano@tsutmb.ru
俄罗斯联邦, 124498, Moscow, Zelenograd, Shokin sq., 1
参考
- Zhang J., Cho Y., Kim J., Malikov A.K., Kim Y.H., Yi J.H., Li W. Non-Destructive Evaluation of Coating Thickness Using Water Immersion Ultrasonic Testing // Coatings. 2021. V. 11. No. 11. doi: 10.3390/COATINGS11111421
- Duan Y., Zhang H., Sfarra S., Avdelidis N.P., Loutas T.H., Sotiriadis G., Kostopoulos V., Fernandes H., Ion Petrescu F., Ibarra-Castanedo C., Maldague X.P. On the use of infrared thermography and acousto-ultrasonics NDT techniques for ceramic-coated sandwich structures // Energies. 2019. V. 12. No. 13. doi: 10.3390/en12132537
- Li Z., Wang C., Ju H., Li X., Qu Y., Yu J. Prediction Model of Aluminized Coating Thicknesses Based on Monte Carlo Simulation by X-ray Fluorescence // Coatings. 2022. V. 12. No. 6. doi: 10.3390/coatings12060764
- Song P., Xiao P., Liu J., Wang Y.H. The inspection of coating thickness uniformity of SiC-coated carbon-carbon (C/C) composites by laser-induced thermal-wave imaging // Carbon N. Y. 2019. V. 147. doi: 10.1016/j.carbon.2019.03.015
- Wu J., Li Y. Research on Non-destructive Testing Method of Coating Thickness of Turbine Blade // Journal of Physics: Conference Series. 2020. V. 1617. No. 1. doi: 10.1088/1742-6596/1617/1/012093
- Park J.W., Ha J.M., Seung H.M., Jang H., Choi W. Thickness evaluation of Cr coating fuel rod using encircling ECT sensor // Nucl. Eng. Technol. 2022. V. 54. No. 9. doi: 10.1016/j.net.2022.03.035
- Gong Y., Cao B., Zhang H., Sun F., Fan M. Terahertz based Thickness Measurement of Thermal Barrier Coatings Using Hybrid Machine Learning // Nondestruct. Test. Eval. 2023. doi: 10.1080/10589759.2023.2167991
- Vieweg N., Regner N., Dutzi K., Kutz J., Kehrt M., Steiger A., Kaya C., Stegmaier T. Online thickness measurements of acrylate-based coatings on knitted polyester fabric using terahertz time-domain spectroscopy // J. Ind. Text. 2023. V. 53. doi: 10.1177/15280837231207396
- Chulkov A.O., Nesteruk D.A., Shagdyrov B.I., Vavilov V.P. Erratum to: Method and Equipment for Infrared and Ultrasonic Thermographic Testing of Large-Sized Complex-Shaped Composite Products // Russian Journal of Nondestructive Testing. 2021. V. 57. P. 824. https://doi.org/10.1134/S1061830921090114.
- Schmid S., Reinhardt J., Grosse C.U. Spatial and temporal deep learning for defect detection with lock-in thermography // NDT E Int. 2024. V. 143. doi: 10.1016/j.ndteint.2024.103063
- Mezghani S., Perrin E., Vrabie V., Bodnar J. L., Marthe J., Cauwe B. Evaluation of paint coating thickness variations based on pulsed Infrared thermography laser technique // Infrared Phys. Technol. 2016. V. 76. doi: 10.1016/j.infrared.2016.03.018
- Moskovchenko A., Vavilov V., Švantner M., Muzika L., Houdková Š. Active IR thermography evaluation of coating thickness by determining apparent thermal effusivity // Materials (Basel). 2020. V. 13. No. 18. doi: 10.3390/ma13184057
- Marinetti S., Robba D., Cernuschi F., Bison P.G., Grinzato E. Thermographic inspection of TBC coated gas turbine blades: Discrimination between coating over-thicknesses and adhesion defects // Infrared Phys. Technol. 2007. V. 49. No. 3 SPEC. ISS. doi: 10.1016/j.infrared.2006.06.018
- Franke B., Sohn Y.H., Chen X., Price J.R., Mutasim Z. Monitoring damage evolution in thermal barrier coatings with thermal wave imaging // Surf. Coatings Technol. 2005. V. 200. No. 5—6. doi: 10.1016/j.surfcoat.2005.07.090
- Liu B., Zhang H., Fernandes H., Maldague X. Quantitative evaluation of pulsed thermography, lock-in thermography and vibrothermography on foreign object defect (FOD) in CFRP // Sensors (Switzerland). 2016. V. 16. No. 5. doi: 10.3390/s16050743
- Clarke D.R. Materials selections guidelines for low thermal conductivity thermal barrier coatings // Surf. Coatings Technol. 2003. V. 163—164. doi: 10.1016/S0257-8972(02)00593-5
- Narasimhan T.N. Fourier’s heat conduction equation: History, influence, and connections // Rev. Geophys. 1999. V. 37. No. 1. doi: 10.1029/1998RG900006
- Fourier J.B.J. The analytical theory of heat. 2009.
- Ahmadi M., Mostafavi G., Bahrami M. Natural convection from interrupted vertical walls // J. Heat Transfer. 2014. V. 136. No. 11. doi: 10.1115/1.4028369
- Divin A.G. et al. Application of Laser Scannung Thermography and Regression Analysis to Determine Characteristics of Defects in Polymer Composite Materials // Russ. J. Nondestruct. Test. 2024. V. 60. No. 1.
补充文件
