Application of neural networks for control of printed circuit boards using 3D x-ray microtomography data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article discusses a method for detecting PCB defects using neural networks. The analysis of various neural network architectures is carried out to identify the most effective. An approach to filtering data simulating the operation of a microtomograph using convolutional autoencoders is also presented. To assess the quality of the proposed approaches, the mean Average Precision (mAP) metric for the YOLOv8 and Faster R-CNN models was used.

About the authors

V. I. Syryamkin

The National Research Tomsk State University, TSU

Author for correspondence.
Email: svi_tsu@mail.ru
Russian Federation, 634050 Tomsk, Lenin str., 36

F. A. Klassen

The National Research Tomsk State University, TSU

Email: svi_tsu@mail.ru
Russian Federation, 634050 Tomsk, Lenin str., 36

A. N. Bertsun

The National Research Tomsk State University, TSU

Email: svi_tsu@mail.ru
Russian Federation, 634050 Tomsk, Lenin str., 36

References

  1. Ivanenko B.P., Klestov S.А., Syryamkin V.I. Comparison of neural network methods of data preprocessing in solving problems of analysis, diagnosis, and classification of defects of radio-electronic equipment // Avtometriya. 2023. V. 59. No. 2. P. 17—24.
  2. Levkevich V.I., Ivanenko B.P., Klestov S.А. Classification of printed circuit board surface defects by neural network methods / Innovation-2023. The XIX International School-Conference of Students, Graduate Students and Young Scientists, Tomsk, Russia. 2023. P. 232—234.
  3. Tsvinger V.А., Syryamkin V.I., Klestov S.А. Application of machine vision in quality control of printing covers / Innovation-2023. The XIX International School-Conference of Students, Graduate Students and Young Scientists, Tomsk, Russia. 2023. P. 225—228.
  4. Alghassab M.A. Defect detection in printed circuit boards with pre-trained feature extraction methodology with convolution neural networks // Computers, Materials & Continua. 2022. V. 70. No. 1. P. 637—652.
  5. Adibhatla V.A., Shieh J.S., Abbod M.F., Chih H.C., Hsu C.C., Cheng J. Detecting Defects in PCB using Deep Learning via Convolution Neural Networks / 2018 13th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, Taiwan. 2018. P. 202—205.
  6. Chen W., Huang Z., Mu Q., Sun Y. PCB Defect Detection Method Based on Transformer-YOLO // IEEE Access. 2022. V. 10. P. 129480—129489.
  7. Terven Juan, Cordova-Esparza Diana-Margarita, Romero-González Julio-Alejandro. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS // Machine Learning and Knowledge Extraction. 2023. V. 5. No. 4. P. 1680—1716.
  8. Yujie Yang, Haiyan Kang. An Enhanced Detection Method of PCB Defect Based on Improved YOLOv7 // Electronics. 2023. V. 12. No. 9. P. 2120.
  9. Adibhatla V.A., Chih H.C., Hsu C.C., Cheng J., Abbod M.F., Shieh J.S. Defect Detection in Printed Circuit Boards Using You-Only-Look-Once Convolutional Neural Networks // Electronics. 2020. V. 9. No. 9.
  10. Girshick R. Fast R-CNN / 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile. 2015. P. 1440—1448.
  11. Shaoqing Ren, He Kaiming, Girshick Ross, Sun Jian. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks // IEEE Transactions on Pattern Analysis and Machine Intelligence. 2016. V. 39. No. 6. P. 1137—1149.
  12. Girshick R., Donahue J., Darrell T., Mali J. Rich feature hierarchies for accurate object detection and semantic segmentation / Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. P. 580—587.
  13. Liu L., Ouyang W., Wang X., Fieguth P., Chen J., Liu X., Pietikäinen M. Deep learning for generic object detection: A survey // International journal of computer vision. 2020. V. 128. P. 261—318.
  14. Tang S., He F., Huang X., Yang J. Online PCB defect detector on a new PCB defect dataset // arXiv preprint arXiv:1902.06197. 2019.
  15. Syryamkin V.I., Klestov S.A., Suntsov S.B., Ivanenko B.P., Levkevich V.I. Digital X-ray Tomography // London: Red Square Scientific. 2023. 296 p.
  16. Syryamkin V.I., Klestov S.А., Suncov S.B. Design of 3d x-ray microtomograph based on its «digital twin» // Defectoskopyia. 2022. No. 11. P. 56—65.
  17. Khilchuk М.D., Klestov S.А. X-ray digital tomography for diagnostics of radio-electronic equipment elements / Innovation-2023. The XIX International School-Conference of Students, Graduate Students and Young Scientists, Tomsk, Russia. 2023. P. 229—231.
  18. Minikaev R.R., Klestov S.A. Development of a mathematical model and software for defectoscopy of images of an intelligent x-ray 3d microtomograph based on the neuro-fuzzy method of analysis, diagnosis and classification of defects in radio electronic equipment / Innovation-2022. The XVIII International School-Conference of Students, Graduate Students and Young Scientists Tomsk, Russia. 2022. P. 184—187.
  19. Davis J., Goadrich M. The relationship between Precision-Recall and ROC curves / Proceedings of the 23rd international conference on Machine learning. 2006. P. 233—240.
  20. Venkataraman P. Image denoising using convolutional autoencoder // arXiv preprint arXiv:2207.11771. 2022.
  21. Baldi P. Autoencoders, unsupervised learning, and deep architectures / Proceedings of ICML workshop on unsupervised and transfer learning. JMLR Workshop and Conference Proceedings. 2012. P. 37—49.
  22. Kim J., Ko J., Choi H., Kim H. Printed circuit board defect detection using deep learning via a skip-connected convolutional autoencoder // Sensors. 2021. V. 21. No. 15. P. 4968.
  23. Zhao G., Liu J., Jiang J., Guan H., Wen J.R. Skip-connected deep convolutional autoencoder for restoration of document images / 2018 24th International Conference on Pattern Recognition (ICPR). 2018. P. 2935—2940.
  24. Keras. URL: https://keras.io/
  25. Document № 2024663941. A program for image filtering based on neural network algorithms for the diagnosis of printed circuit boards and REA (PC).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».