Real-Time Control of Direct Laser Deposition Process of Inconel 718 Using Laser Emission Spectroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using atomic emission spectroscopy, the gas-plasma plume generated during laser selective melting of various alloys was investigated. It was demonstrated that the type of protective gas used affects the spectral characteristics. The use of helium as a process gas compared to argon reduces overall luminescence and the contributions of individual elements to the spectrum, indicating lower losses of these elements through evaporation under laser radiation exposure.

Full Text

Restricted Access

About the authors

Alexander A. Golyshev

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: alexgol@itam.nsc.ru
Russian Federation, 4/1, Institutskaya St., Novosibirsk, 630090

Nikolay A. Maslov

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: nmaslov@itam.nsc.ru
Russian Federation, 4/1, Institutskaya St., Novosibirsk, 630090

Sergey A. Konstantinov

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: azkin@mail.ru
Russian Federation, 4/1, Institutskaya St., Novosibirsk, 630090

Alexander G. Malikov

Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences

Email: smalik707@yandex.ru
Russian Federation, 4/1, Institutskaya St., Novosibirsk, 630090

References

  1. Malikov A.G., Golyshev A.A., Vitoshkin I.E. Recent trends in laser welding and additive technologies (Review) // Journal of Applied Mechanics and Technical Physics. 2023. V. 64. No. 1. P. 31—49.
  2. Golyshev A.A., Malikov A.G., Orishich A.M., Gulov M.A., Ancharov A.I. The effect of using repetitively pulsed laser radiation in selective laser melting when creating a metal-matrix composite Ti—6Al—4V—B4C // International Journal of Advanced Manufacturing Technology. 2021. V. 117. P. 1891—1904.
  3. Matsunawa A., Kim J.D. Basic understanding on beam-plasma interaction in laser welding // Pacific International Conference on Applications of Lasers and Optics. Laser Institute of America. 2006. V. 2006. No. 1. P. 128—133.
  4. Mrňa L., Šarbort M. Plasma bursts in deep penetration laser welding // Physics Procedia. 2014. V. 56. P. 1261—1267.
  5. Sun D., Cai Y., Wang Y., Wu Y., Wu Y. Effect of He–Ar ratio of side assisting gas on plasma 3D formation during CO2 laser welding // Optics and Lasers in Engineering. 2014. V. 56. P. 41—49.
  6. Kuo T.Y., Lin Y.D. Effects of different shielding gases and power waveforms on penetration characteristics and porosity formation in laser welding of Inconel 690 alloy // Materials transactions. 2007. V. 48. No. 2. P. 219—226.
  7. Ahn J., He E., Chen L., Dear J., Davies C. The effect of Ar and He shielding gas on fibre laser weld shape and microstructure in AA 2024-T3 // Journal of Manufacturing Processes. 2017. V. 29. P. 62—73.
  8. Bidare P., Bitharas I., Ward R.M., Attallah M.M., Moore A.J. Fluid and particle dynamics in laser powder bed fusion // Acta Materialia. 2018. V. 142. P. 107—120.
  9. Ye D., Zhu K., Fuh J.Y.H., Zhang Y., Soon H.G. The investigation of plume and spatter signatures on melted states in selective laser melting // Optics and Laser Technology. 2018. V. 111 (March). P. 395—406.
  10. You D.Y., Gao X.D., Katayama S. Review of laser welding monitoring // Sci. Technol. Weld. Join. 2014. V. 19. No. 3. P. 181—201.
  11. Collur M.M., Debroy T. Emission spectroscopy of plasma during laser welding of AISI 201 stainless steel // Metall. Mater. Trans. B. 1989. V. 20. No. 2. P. 277—286.
  12. Szymański Z., Kurzyna J., Kalita W. The spectroscopy of the plasma plume induced during laser welding of stainless steel and titanium // J. Phys. D. Appl. Phys. 1997. V. 30. No. 22. P. 3153–3162.
  13. Dai J., Wang X., Yang L., Huang J., Zhang Ya., Chen J. Study of plasma in laser welding of magnesium alloy // Int. J. Adv. Manuf. Technol. 2014. V. 73. No. 1—4. P. 443—447.
  14. Zhou L., Zhang M., Jin X., Zhang H., Mao C. Study on the burning loss of magnesium in fiber laser welding of an Al—Mg alloy by optical emission spectroscopy // Int. J. Adv. Manuf. Technol. 2017. V. 88. No. 5—8. P. 1373—1381.
  15. Song L., Wang C., Mazumder J. Identification of phase transformation using optical emission spectroscopy for direct metal deposition process // High Power Laser Mater. Process. Lasers, Beam Deliv. Diagnostics, Appl. 2012. V. 8239. P. 82390G.
  16. Hu Y., Chen H., Liang X., Xie J. Monitoring molten pool temperature, grain size and molten pool plasma with integrated area of the spectrum during laser additive manufacturing // Journal of Manufacturing Processes. 2021. V. 64 (February). P. 851—860.
  17. Schmidt M., Gorny S., Rüssmeier N., Partes K. Investigation of Direct Metal Deposition Processes Using High-Resolution In-line Atomic Emission Spectroscopy // Journal of Thermal Spray Technology. 2023. V. 32 (2—3). P. 586—598.
  18. Lough C.S., Escano L.I., Qu M., Smith C.C., Landers R.G., Bristow D.A., Chen L., Kinzel E.C. In-situ optical emission spectroscopy of selective laser melting // Journal of Manufacturing Processes. 2020. V. 53 (January). P. 336—341.
  19. Maslov N.A., Konstantinov S.A., Malikov A.G. Development of approaches to optical diagnostics of laser weld formation process in real time based on laser emission spectroscopy // Russian Journal of Nondestructive Testing. 2023. V. 59. No. 6. P. 736—742.
  20. Tsibulskaya E., Maslov N. Decomposition of multi‐component fluorescence spectra by narrow peak method based on principal component analysis // Journal of Chemometrics. 2021. V. 35. No. 6. P. e3343.
  21. Manne R. On the resolution problem in hyphenated chromatography // Chemometrics and Intelligent Laboratory Systems. 1995. V. 27. No. 1. P. 89—94.
  22. Abdullaev R.N., Khairulin R.A., Stankus S.V., Kozlovskii Yu.M. Density and volumetric expansion of the Inconel 718 alloy in solid and liquid states // Thermophysics and Aeromechanics. 2019. V. 26. No. 5. P. 785—788.
  23. Halstead W.D. A review of saturated vapour pressures and allied data for the principal corrosion products of iron, chromium, nickel and cobalt in flue gases // Corrosion Science. 1975. V. 15. No. 6—12. P. 603—625.
  24. Matthews M.J., Guss G., Khairallah S.A., Rubenchik A.M., Depond P.J., King W.E. Denudation of metal powder layers in laser powder-bed fusion processes / Additive manufacturing handbook. CRC Press, 2017. P. 677—692.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematics of the gas-laser torch and the conducted experiment.

Download (283KB)
3. Fig. 2. Spectra measured during laser exposure of stainless steel substrate samples using helium or argon as protective process gas.

Download (168KB)
4. Fig. 3. Spectra averaged over 5 measurements for different laser irradiation powers and types of shielding gas (a - argon; b - helium).

Download (331KB)
5. Fig. 4. Example of spectra representation as a sum (a - original spectrum; b - its continuous part; c - its linear part).

Download (239KB)
6. Fig. 5. Intensity of chromium lines for different laser irradiation powers and types of shielding gas (a - argon; b - helium).

Download (162KB)
7. Fig. 6. Analysis of MHC spectra: a - GC; b - non-convex approximation of the thermal spectrum using GC; c - comparison of the found components (dashed line) with the theoretical dependence (solid line); d - full set of components.

Download (594KB)
8. Fig. 7. Component contributions to the continuum part of the spectrum using argon (a - 1780 K component; b - 2730 K component; c - molecular component) and helium (d - 1780 K component; e - 2730 K component; f - molecular component).

Download (365KB)

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».