The Anisotropy Degree Measurement of Electrical Properties of the Epoxy Resin — Magnetic Fluid — Carbon Nanotubes Composite
- 作者: Postelga A.E.1, Igonin S.V.1
-
隶属关系:
- Chernyshevsky Saratov National Research State University
- 期: 编号 2 (2025)
- 页面: 53-66
- 栏目: Comprehensive application of non-destructive testing methods
- URL: https://journals.rcsi.science/0130-3082/article/view/282249
- DOI: https://doi.org/10.31857/S0130308225020053
- ID: 282249
如何引用文章
详细
The electrical properties of a material representing a composite of epoxy resin, magnetic fluid and carbon nanotubes are investigated. It is shown that in composites dried in the presence of a magnetic field, elongated conductive structures consisting of carbon nanotubes and magnetic fluid are formed. Their presence causes the appearance of anisotropy of the electrical properties of such composites. The anisotropy of the properties was studied by microwave waveguide methods, according to the frequency dependence of the reflection coefficient of microwave radiation from a periodic structure in which the composite under study was used as a damaged layer. It was found that the electrical properties of the composite depend on the magnitude and direction of the magnetic field induction, as well as on changes in the concentration of components in the composite. Numerical modeling was performed and the importance of taking into account the anisotropy of the electrical properties of the formed structures when calculating the integral parameters of the composite was shown.
作者简介
A. Postelga
Chernyshevsky Saratov National Research State University
编辑信件的主要联系方式.
Email: sanyalace@inbox.ru
俄罗斯联邦, 83, Astrakhanskaya St., Saratov, 410012
S. Igonin
Chernyshevsky Saratov National Research State University
Email: igoninsemen@ya.ru
俄罗斯联邦, 83, Astrakhanskaya St., Saratov, 410012
参考
- Gholizadeh S. A review of non-destructive testing methods of composite materials // Procedia Structural Integrity. 2016. V. 1. P. 050—057. doi: 10.1016/j.prostr.2016.02.008
- Mohammed S.R., Mohamed A. Abou-Khousa, Muhammad F.A. A review on microwave non-destructive testing (NDT) of composites // Engineering Science and Technology, an International Journal. 2024. V. 58. Art. No. 101848. DOI: https://doi.org/10.1016/j.jestch.2024.101848
- Kaz’min A.I., Fedyunin P.A., Fedyunin D.P. Evaluation of Permittivity and Thickness Gaging for Anisotropic Dielectric Coatings by the Method of Surface Electromagnetic Waves // Defectoskopiya. 2021. No. 6. P. 57—72.
- Vegesna S., Irin F., Green M., Sae M. Non-destructive technique for broadband characterization of carbon nanotubes at microwave frequencies // Journal of Electromagnetic Waves and Applications. 2013. V. 27. No. 11. P. 1372—1381. DOI: http://dx.doi.org/10.1080/09205071.2013.808968
- Bochkova T.S., Igonin S.V., Usanov D.A., Postelga A.É. Determining Parameters of a Ferrofluid Based on the Temperature Dependence of Microwave Reflection Spectrum with Allowance for the Formed Agglomerates of Ferromagnetic Nanoparticles // Defectoskopiya. 2018. No. 8. P. 41—49. doi: 10.1134/S0130308218080055
- Hughes K.J., Iyer K.A., Bird R.E., Ivanov J., Banerjee S., Georges G., Zhou Q.A. Review of Carbon Nanotube Research and Development Materialsand Emerging Applications // ACS Appl. Nano Mater. 2024. V. 7. P. 18695—18713. DOI: https://doi.org/10.1021/acsanm.4c02721
- Balguria P.K., Harris Samuel D.G., Thumu U. A review on mechanical properties of epoxy nanocomposites // Materials Today: Proceedings. 2021. V. 44. Part 1. P. 346—355. DOI: https://doi.org/10.1016/j.matpr.2020.09.742
- Ogbonna V.E., Popoola A.P.I., Popoola O.M. A review on recent advances on the mechanical and conductivity properties of epoxy nanocomposites for industrial applications // Polymer Bulletin. 2023. V. 80. P. 3449—3487. DOI: https://doi.org/10.1007/s00289-022-04249-4
- Singh B.P., Verma P., Veena C., Saini P., Pande S., Singh V.N., Mathur R.B. Enhanced microwave shielding and mechanical properties of high loading MWCNT—epoxy composites // J. Nanopart Res. 2013. V. 15. No. 4. Art. No. 1554. doi: 10.1007/s11051-013-1554-0
- Usanov D.A., Skripal A.V., Romanov A.V. Complex permittivity of composites based on dielectric matrices with carbon nanotubes // Technical Physics. 2011. V. 56. No. 1. P. 102—106. doi: 10.1134/S1063784211010257
- Valdirene Aparecida da Silva, Rezende M.C. S-parameters, electrical permittivity, and absorbing energy measurements of carbon nanotubes-based composites in X-band // J. Appl. Polym. Sci. 2020. V. 138. No. 7. P. 1—10. doi: 10.1002/app.49843
- Vorob’eva E.A., Evseev A.P., Petrov V.L., Shemukhin A.A., Chechenin N.G. The conductivity in Composite Materials Based on Oriented Carbon Nanotubes // Moscow University Physics Bulletin. 2021. V. 76. No. 1. P. 29—35. doi: 10.3103/S0027134921010112
- Vovchenko L.L., Zagorodnii V.V., Yakovenko O.S., Matzui L.Yu., Oliynyk V.V., Launets V.L. Microwave Properties and Conductivity Anisotropy of Oriented Multiwalled Carbon Nanotube/Epoxy Composites // Metallofiz. Noveishie Tekhnol. 2016. V. 38. No. 5. P. 657—668. doi: 10.15407/mfint.38.05.0657
- Kim I.T., Tannenbaum A., Tannenbaum R. Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices // Carbon. 2011. V. 49. No. 1. P. 54—61. DOI: https://doi.org/10.1016/j.carbon.2010.08.041
- Shahsavar A., Salimpour M.R., Saghafian M., Shafii M.B. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes // J. Mech. Sci. Technol. 2016. V. 30. No. 2. P. 809—815. doi: 10.1007/s12206-016-0135-4
- Vales-Pinzón C., Alvarado-Gil J.J., Medina-Esquivel R., Martínez-Torres P. Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field // J. Magn. Magn. Mat. 2014. V. 369. P. 114—121. DOI: https://doi.org/10.1016/j.jmmm.2014.06.025
- Dotsenko O.A., Pavlova A.A., Dotsenko V.S. The effect of external magnetic field on dielectric permeability of multiphase ferrofluids // Russian Physics Journal. 2018. V. 60. N. 11. P. 1955—1960. doi: 10.1007/s11182-018-1308-7
- Turkin S.D., Dikansky Yu.I. Peculiarities of Reflection of Electromagnetic Waves in the Microwave Range from Magnetic Colloids // Technical Physics. 2021. V. 66. No. 1. P. 124—132. doi: 10.1134/S1063784221010229
- Sloan R., Stakenborghs R.J. Recent Developments in the Industrial Application of Microwave NDT / Sensors and Communication Technologies in the 1 GHz to 10 THz Band. 2024 Proceedings Volume 13203. DOI: https://doi.org/10.1117/12.3037072
- Usanov D.A., Nikitov S.A., Skripal A.V., Ponomarev D.V., Latysheva E.V. Measurements of electrophysical characteristics of semiconductor structures with the use of microwave photonic crystals // Semiconductors. 2016. V. 50. No. 13. P. 1759—1763. doi: 10.1134/S1063782616130091
- Skripal A.V., Ponomarev D.V., Komarov A.A., Sharonov V.E. Tamm resonances control in one-dimensional microwave photonic crystal for measuring parameters of heavily doped semiconductor layers // Izvestiya of Saratov University Physics. 2022. V. 22. No. 2. P. 123—130. doi: 10.18500/1817-3020-2022-22-2-123-130
- Usanov D.A., Skripal A.V., Abramov A.V., Bogolyubov A.S. Determination of the metal nanometer layer thickness and semiconductor conductivity in metal-semiconductor structures from electromagnetic reflection and transmission spectra // Technical Physics. 2006. V. 51. No. 5. P. 644—649. doi: 10.1134/S1063784206050173
- Sushko M., Kris’kiv S.K. Compact group method in the theory of permittivity of heterogeneous systems // Technical Physics. 2009. V. 54. No. 3. P. 423—427. doi: 10.1134/S1063784209030165
补充文件
