Using Poisson’s ratio and acoustic anisotropy parameter to assess damage and accumulated plastic strain during fatigue loading of austenitic steel

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work investigated the effect of fatigue failure on the elastic characteristics of metastable austenitic steel AISI 321: Poisson’s ratio and acoustic anisotropy parameter. The elastic characteristics were calculated using ultrasonic measurements of the propagation time of longitudinal and shear elastic waves. The volume fraction of strain-induced martensite was determined by the eddy current method. Theoretical studies have shown that the main factors influencing Poisson’s ratio are the accumulation of microdamages and changes in phase composition. The change in the acoustic anisotropy parameter is associated with the influence of cyclic deformation on the crystallographic texture of the material matrix and the formation of oriented crystals of strain-induced martensite. Based on the analysis of experimental results, expressions were obtained for calculating damage and relative accumulated plastic deformation based on acoustic measurement data, which are widely used in engineering practice to determine the fatigue life of structural materials.

About the authors

V. V. Mishakin

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Author for correspondence.
Email: ndt@ipmran.ru
Russian Federation, 603950 Nizhniy Novgorod, Ul’yanova str., 46

V. A. Klyushnikov

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: ndt@ipmran.ru
Russian Federation, 603950 Nizhniy Novgorod, Ul’yanova str., 46

A. V. Gonchar

Federal Research Center A.V. Gaponov-Grekhov Institute of Applied Physics of the Russian Academy of Sciences

Email: ndt@ipmran.ru
Russian Federation, 603950 Nizhniy Novgorod, Ul’yanova str., 46

O. A. Sergeeva

Volga-Spetsgidroenergomontazh – Kamspetsenergo

Email: sergeevaoa_kse@mail.ru
Russian Federation, 423800 Naberezhnye Chelny, Shlyuzovaya str, 8

References

  1. Gol’dshtein M., Litvinov V., Bronfin B. Metallophysics of high-strength alloys. Moscow: Metallurgia, 1986. 312 p.
  2. Rigmant M.B., Korkh M.K. Control of the phase composition and magnetic properties of products made of austenitic-ferritic and austenitic-martensitic steels // Journal of «Almaz — Antey» Air and Space Defence Corporation. 2020. V. 3. P. 45—53.
  3. Korkh M.K., Rigmant M.B., Davydov D.I., Shishkin D.A., Nichipuruk A.P., Korkh Yu.V. Determination of the phase composition of three-phase chromium–nickel steels from their magnetic properties // Defectoskopya. 2015. No. 12. P. 20—31.
  4. Rigmant M.B., Kazantseva N.V., Kochnev A.V., Koemets Yu.N., Korkh Yu.V., Korkh M.K., Karabanalov M.S. Revealing Magnetic Anisotropy in Austenitic Chromium—Nickel Steel After Rolling // Defectoskopya. 2021. No. 12. P. 56—62.
  5. Kazantseva N.V., Koemets Y.N., Shishkin D.A., Ezhov I.V., Davydov D.I., Rigmant M.B., Koch- nev A. V. A Magnetic Study of Deformed Medical Austenitic Steel Manufactured by 3D Laser Printing // Phys. Metals Metallogr. 2022. V. 123. P. 1139—1146.
  6. Savrai R.A., Kogan L.K. Eddy Current Testing of Fatigue Degradation of Metastable Austenitic Steel under Gigacycle Contact-Fatigue Loading // Defectoskopya. 2021. No. 5. P. 56—63.
  7. Pasmanik L.A., Kamyshev A.V., Radostin A.V., Zaitsev V.Yu. Parameters of Acoustic Inhomogeneity for Nondestroductive Estimation of the Influence of Manufacturing Technology and Operational Damage on the Structure of Metal // Defectoskopya. 2020. No. 12. P. 24—36.
  8. Barannikova S.A., Nadezhkin M.V., Iskhakova P.V. Mechanical and acoustic properties of deformable alloys // Izvestiya. Ferrous Metallurgy. 2023. V. 66 (2). P. 162—167.
  9. Terent’ev V.F., Kolmakov A.G., Blinov V.M. Influence of deformation martensite on fatigue of austenitic stainless steels // Deformatsiya i Razrushenie materialov. 2007. V. 6. P. 2—9.
  10. Sayers C.M., Allen D.R. The influence of stress on the principal polarisation directions of ultrasonic shear waves in textured steel plates // J. Phys. D: Appl. Phys. 1984. V. 17. P. 1399—1413.
  11. Khlybov A.A., Uglov A.L. On an Acoustic Testing Method for Monitoring the Spatial Inhomogeneity of Plastic Deformation in Weakly Anisotropic Orthotropic Materials // Defectoskopya. 2023. No. 1. P. 25—36.
  12. Khlybov A.A., Uglov A.L., Ryabov D.A., Anosov M.S. Evaluation of Structural Metal Materials Damage by Acoustic Methods // Vestnik IzhGTU imeni M.T. Kalashnikova. 2022. V. 25. No. 4. P. 18—26.
  13. Carvajal L., Artigas A., Monsalve A., Vargas Y. Acoustic birefringence and Poisson’s ratio determined by ultrasound: tools to follow-up deformation by cold rolling and recrystallization // Mat. Res. 2017. V. 20. P. 1—7.
  14. Mishakin V.V., Gonchar A.V., Kurashkin K.V., Klyushnikov V.A., Kachanov M.L. On low-cycle fatigue of austenitic steel. Part I: Changes of Poisson's ratio and elastic anisotropy // Int. J. Eng. Sci. 2021. V. 168. No. 103567.
  15. Collins J.A. Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention / 2nd ed. New York: Wiley, 1993. 624 p.
  16. Romanov A.N. Low-cycle fatigue of structural metal materials // Vestni nauchnogo I teknicheskogo razvitiya. 2015. No.12 (100). P. 42—62.
  17. Krupp U., West C., Christ H.-J. Deformation-induced martensite formation during cyclic deformation of metastable austenitic steel: Influence of temperature and carbon content // Mat. Sci. Eng. A. 2008. V. 481—482. P. 713—717.
  18. Truell R., Elbaum C., Chick B.B. Ultrasonic Methods in Solid State Physics. New York: Academic, 1969. 308 p.
  19. Erofeev V.I. Wave processes in solids with microstructure. Moscow: Publishing house Mosk. Un-ta, 1999. 328 p.
  20. Shermergor T.D. Theory of elasticity of micro-inhomogeneous media. Moscow: Nauka, 1977. 400 p.
  21. Sergeeva O.A., Mishakin V.V., Klyushnikov V.A. Study of the relationship between fatigue characteristics and elastic modulus of metastable austenitic steels // Problems of Strength and Plasticity. 2024. V. 86 (1). P. 94—105.
  22. Gonchar A.V., Mishakin V.V., Klyushnikov V.A. The effect of phase transformations induced by cyclic loading on the elastic properties and plastic hysteresis of austenitic stainless steel // Int. J. Fatigue. 2018. V. 106. P. 153—158.
  23. Kachanov M., Sevostianov I. Micromechanics of Materials, with Applications. Cham: Springer, 2018. 712 p.
  24. Salganik R.L. Mechanics of bodies with a large number of cracks // Mechanics of solids. 1973. No. 4. P. 149—158.
  25. Kachanov M.L, Mishakin V.V., Pronina U.G. On low-cycle fatigue of austenitic steel. Part II: Extraction of information on microcrack density from a combination of the acoustic and eddy current data // Int. J. Eng. Sci. 2021. V. 169. No. 103569.
  26. Non-destructive testing and diagnostics / Ed. V.V. Klyuev. M.: Mashinostroenie, 1995. 487 p.
  27. Klyushnikov V. Influence of plastic deformation temperature on ultrasonic and electromagnetic properties of austenitic steel // Materials Today: Proceedings. 2019. V. 19 (5). P. 2320—2322.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies