PARALLEL IMAGE RECONSTRUCTION USING THE MAXIMUM LIKELIHOOD METHOD USING A GRAPHICS PROCESSOR AND THE OpenGL LIBRARY

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The creation of fast parallel iterative statistical algorithms based on the use of graphics accelerators is an important and urgent task of great scientific and practical importance. An algorithm based on the method of maximizing the mathematical expectation of maximum likelihood (maximum likelihood expectation MLEM) is considered. MLEM is a numerical method for determining maximum likelihood estimates and, since its first application in the field of image reconstruction in 1982, remains one of the most popular statistical methods of image reconstruction, being the foundation for many other approaches. A new version of the MLEM parallel algorithm is proposed, which provides global convergence of the iterative algorithm. To parallelize the algorithm, the texture mapping method is used using the OpenGL graphics library. The parallel algorithm is described in as much detail as possible. Examples of several reconstructions of images of aluminum casting products are given The obtained result can be used for non-destructive testing of various industrial products, including testing of foundry products.

Sobre autores

C. Zolotarev

Institute of Applied Physics of the National Academy of Sciences of Belarus

Email: sergei.zolotarev@gmail.com
Minsk, Republic of Belarus

A. Taruat

Belarusian National Technical University

Email: ahmedtharwat6773@gmail.com
Minsk, Republic of Belarus

Bibliografia

  1. Rizo P., Grangeat P., Sire P., Lemasson P., Melennec P. Comparison of three-dimensional x-ray conebeam reconstruction algorithms with circular source trajectories // J. Opt. Soc. Amer. 1991. V. 8. No. 10. P. 1639—1648.
  2. Cabral B., Cam N., Foran J. Accelerated volume rendering and tomographic reconstruction using texture mapping hardware // Symposium on Volume Visualization. 1994. P. 91—98.
  3. Mueller K., Yagel R., Wheller J.J. Anti-aliased 3-D cone-beam reconstruction of low-contrast objects with algebraic methods // IEEE Trans. Med. Imag. 1999. V. 18. P. 519—537.
  4. Segal M., Korobkin C., van Widenfelt R., Foran J., Haeberli P.E. Fast shadows and lighting effects using texture mapping // SIGGRAPH’92. 1992. V. 26. P. 249—252.
  5. Gordon R., Bender R., Herman G.T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography // J. Theor. Biol. 1970. No. 29. P. 471—481.
  6. Lange K., Fessler J.A. Globally convergent algorithms for maximum a posteriori transmission tomography // Image Processing, IEEE Transactions. 1995. V. 4. No. 10. P. 1430—438.
  7. De Man B., Qi J. Statistical Methods for Image Reconstruction / 2009 IEEE Nuclear Science Symposium — Short Course Documents, Orlando, FL, USA. 2009. 27 p.
  8. Andersen A.H., Kak A.C. Simultaneous Algebraic Reconstruction Technique (SART): a superior implementation of the ART algorithm // Journal of Ultrasonic Imaging. 1984. V. 6. No. 1. P. 81—94.
  9. Xu F., Mueller K. Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware // IEEE Trans. Nucl. Sci. 2005. V. 52. P. 654—657.
  10. Gengsheng Lawrence Zeng. Maximum-Likelihood Expectation-Maximization Algorithm vs. Windowed Filtered Backprojection Algorithm: A Case Study // Journal of nuclear medicine technology. June 2018. V. 46. No. 2.
  11. Dempster A., Laird N., Rubin D. Maximum likelihood from incomplete data via the EM algorithm // J. R. Stat. Soc. 1977. No. 39. P. 1—38.
  12. Vardi Y., Shepp L.A., Kaufman L. A statistical-model for positron emission tomography // J. Am. Stat. Assoc. 1985. No. 80. P. 8—20.
  13. Эмиссионная томография: пер. с англ. / Ред. Д. Арневальд, М. Верник. М.: Техносфера, 2009.
  14. Золотарев С.А., Венгринович В.Л. Трехмерная итерационная томографическая реконструкция с использованием графических процессоров // Дефектоскопия. 2009. № 8. С. 82—94.
  15. Золотарев С.А., Мирзаванд М.А. Трехмерная реконструкция методом SART с минимизацией тотальной вариации // Системный анализ и прикладная информатика. 2015. № 3. С. 31—35.
  16. Золотарев С.А., Таруат А.Т., Биленко Э.Г. Итерационная реконструкция изображений алюминиевого литья с учетом априорной информации // Дефектоскопия. 2023. № 4. С. 46—55.
  17. Золотарев С.А., Таруат А.Т., Биленко Э.Г. Итерационная реконструкция изображения алюминиевого корпуса с учетом априорной информации // Неразрушающий контроль и диагностика. 2023. № 1. С. 46—52.
  18. Zolotarev S.A., Taruat Ahmed Talat Taufik, Bilenko E.G. Taking into account a priori information in the iterative reconstruction of images of foundry products // Proceedings of the National Academy of Sciences of Belarus. Physical-technical series. 2023. V. 68. No. 3. P. 242—251.
  19. Артемьев В.М., Наумов А.О., Тиллак Г.-Р. Реконструкция динамических изображений в томографии процессов. Минск: Издательский центр БГУ, 2004. 168 с.
  20. Artemiev V.M., Naumov A.O., Tillack G.-R. Adaptive image reconstruction applied to X-Ray tomography // Materialprufung. 1998. V. 40. No. 9. P. 342—345.
  21. Artemiev V.M., Naumov A.O., Tillack G.-R. Adaptive image reconstruction with predictive model // Maximum Entrophy and Bayesian Methods. Eds. W. von der Linden e. a. Kluwer Academic Publishers, 1999. P. 123—130.
  22. Artemiev V.M., Naumov A.O., Tillack G.-R. Recursive Tomographic Image Reconstruction Using a Kalman Filter Approach in the Time Domain // J. Phys. D: Appl. Phys. 2001. V. 34. P. 2073—2083.
  23. Artemiev V.M., Naumov A.O., Tillack G.-R. Statistical Estimation theory Approach for the Dynamic Image Reconstruction / Proc. 2nd WorldCongress on Industrial Process Tomography. Hannover, Germany, August 2001. Hannover, 2001. P. 772—779.
  24. Naumov A., Khmarskiy P., Byshnev N., Piatrouski M. Methods and software for estimation of total electron content in ionosphere using GNSS observations // Engineering Applications. 2023. V. 2. No. 3. P. 243—253.
  25. Rizo P., Grangeat P., Sire P., Lemasson P., Melennec P. Comparison of three-dimensional x-ray conebeam reconstruction algorithms with circular source trajectories // J. Opt. Soc. Amer. 1991. V. 8. No. 10. P. 1639—1648.
  26. Cabral B., Cam N., Foran J. Accelerated volume rendering and tomographic reconstruction using texture mapping hardware // Symposium on Volume Visualization. 1994. P. 91—98.
  27. Mueller K., Yagel R., Wheller J.J. Anti-aliased 3-D cone-beam reconstruction of low-contrast objects with algebraic methods // IEEE Trans. Med. Imag. 1999. V. 18. P. 519—537.
  28. Segal M., Korobkin C., van Widenfelt R., Foran J., Haeberli P.E. Fast shadows and lighting effects using texture mapping // SIGGRAPH’92. 1992. V. 26. P. 249—252.
  29. Gordon R., Bender R., Herman G.T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography // J. Theor. Biol. 1970. No. 29. P. 471—481.
  30. Lange K., Fessler J.A. Globally convergent algorithms for maximum a posteriori transmission tomography // Image Processing, IEEE Transactions. 1995. V. 4. No. 10. P. 1430—438.
  31. De Man B., Qi J. Statistical Methods for Image Reconstruction / 2009 IEEE Nuclear Science Symposium — Short Course Documents, Orlando, FL, USA. 2009. 27 p.
  32. Andersen A.H., Kak A.C. Simultaneous Algebraic Reconstruction Technique (SART): a superior implementation of the ART algorithm // Journal of Ultrasonic Imaging. 1984. V. 6. No. 1. P. 81—94.
  33. Xu F., Mueller K. Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware // IEEE Trans. Nucl. Sci. 2005. V. 52. P. 654—657.
  34. Gengsheng Lawrence Zeng. Maximum-Likelihood Expectation-Maximization Algorithm vs. Windowed Filtered Backprojection Algorithm: A Case Study // Journal of nuclear medicine technology. June 2018. V. 46. No. 2.
  35. Dempster A., Laird N., Rubin D. Maximum likelihood from incomplete data via the EM algorithm // J. R. Stat. Soc. 1977. No. 39. P. 1—38.
  36. Vardi Y., Shepp L.A., Kaufman L. A statistical-model for positron emission tomography // J. Am. Stat. Assoc. 1985. No. 80. P. 8—20.
  37. Emission tomography: trans. from English / Ed. D. Arnewald, M. Wernick. M.: Tekhnosphere, 2009. In Russian
  38. Zolotarev S.A., Vengrinovich V.L. Three-dimensional and iterative tomographic reconstruction using graphic processors // Defectoscopya. 2009. No. 8. P. 82—94. In Russian.
  39. Zolotarev S.A., Mirzavand M.A. Three-dimensional reconstruction using the SART method with minimization of total variation // System analysis and applied informatics. 2015. No. 3. P. 31—35. In Russian.
  40. Zolotarev S.A., Taruat A.T., Bilenko E.G. Iterative reconstruction of aluminum casting images taking into account a priori information // Defectoscopya. 2023. No. 4. P. 46—55. In Russian.
  41. Zolotarev S.A., Taruat A.T., Bilenko E.G. Iterative reconstruction of an image of an aluminum body taking into account a priori information // Non-destructive testing and diagnostics. 2023. No. 1. P. 46—52. In Russian.
  42. Zolotarev S.A., Taruat Ahmed Talat Taufik, Bilenko E.G. Taking into account a priori information in the iterative reconstruction of images of foundry products // Proceedings of the National Academy of Sciences of Belarus. Physical-technical series. 2023. V. 68. No. 3. P. 242—251.
  43. Artemiev V., Naumov A., Tillack G.-R. Adaptive image reconstruction applied to X-Ray tomography // Materialprufung. 1998. V. 40. No. 9. P. 342—345.
  44. Artemiev V.M., Naumov A.O., Tillack G.-R. Adaptive image reconstruction applied to X-Ray tomography // Materialprufung. 1998. V. 40. No. 9. P. 342—345.
  45. Artemiev V.M., Naumov A.O., Tillack G.-R. Adaptive image reconstruction with predictive model // Maximum Entrophy and Bayesian Methods. Eds. W. von der Linden e. a. Kluwer Academic Publishers, 1999. P. 123—130.
  46. Artemiev V.M., Naumov A.O., Tillack G.-R. Recursive Tomographic Image Reconstruction Using a Kalman Filter Approach in the Time Domain // J. Phys. D: Appl. Phys. 2001. V. 34. P. 2073—2083.
  47. Artemiev V.M., Naumov A.O., Tillack G.-R. Statistical Estimation theory Approach for the Dynamic Image Reconstruction / Proc. 2nd WorldCongress on Industrial Process Tomography. Hannover, Germany, August 2001. Hannover, 2001. P. 772—779.
  48. Naumov A., Khmarskiy P., Byshnev N., Piatrouski M. Methods and software for estimation of total electron content in ionosphere using GNSS observations // Engineering Applications. 2023. V. 2. No. 3. P. 243—253.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».