Modern trends in the application of thermoelectric method in non-destructive testing (review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article provides an overview of the main directions of using the thermoelectric testing method in various spheres of the national economy. The thermoelectric method is most widely used in industry. There are publications on the application of the thermoelectric method for quality monitoring of turning and friction stir welding. It is shown that the thermoelectric method makes it possible to increase the reliability of testing and, based on testing data, ensure optimal modes of the technological process of metalworking and welding. A number of articles are devoted to the application of the thermoelectric method to plastic deformation testing, the dependence of thermal EMF on the degree of plastic deformation is revealed. Recently, publications have appeared on the application of the thermoelectric method to testing the thermal resistance of the design “housing of a power semiconductor device-thermal interface-cooling radiator”. This design is very widespread in electronic equipment. In addition, there are articles on the use of the thermoelectric method to testing the transient resistance of contacts in the power supply network. It is shown that with an increase in contact resistance, the value of thermal EMF increases proportionally, which can be used to prevent emergencies in the power supply network. The thermoelectric method has also been successfully applied to diagnose the degree of titanium flooding. The dependence of the thermal EMF value on the degree of hydrogenation has been revealed. The use of the thermoelectric method is not limited to the field of industrial production. The thermoelectric method is successfully used in medicine for the undetectable detection of nucleic acid sequences, for the temperature diagnosis of human teeth, as well as for the diagnosis of inflammatory processes in the human body.

Full Text

Restricted Access

About the authors

A. I. Soldatov

Tomsk Polytechnic University

Author for correspondence.
Email: asoldafof@tpu.ru
Russian Federation, 634050 Tomsk, Lenin avenue, 30

A. A. Soldatov

Tomsk Polytechnic University

Email: soldatov_aa@tpu.ru
Russian Federation, 634050 Tomsk, Lenin avenue, 30

M. A. Kostina

Tomsk Polytechnic University

Email: kostina_ma@tpu.ru
Russian Federation, 634050 Tomsk, Lenin avenue, 30

References

  1. Carreon H. Thermoelectric detection of spherical tin inclusions in copper by magnetic sensing // Journal of Applied Physics. 2000. V. 88. Is. 11. P. 6495. doi: 10.1063/1.1322591
  2. Carreon H. Thermoelectric Nondestructive Evaluation of Residual Stress in Shot-Peened Metals // Research in Nondestructive Evaluation. 2002. V. 14. Is. 2. P. 59. doi: 10.1080/09349840209409705
  3. Nagy P.B. Non-destructive methods for materials' state awareness monitoring // Insight: Non-Destructive Testing and Condition Monitoring. 2010. V. 52. Is. 2. P. 61. doi: 10.1784/insi.2010.52.2.61
  4. Soldatov A.A., Seleznev A.I., Fiks I.I., Soldatov A.I., Kröning Kh.M. Nondestructive proximate testing of plastic deformations by differential thermal EMF measurements // Russian Journal of Nondestructive Testing. 2012. V. 48. Is. 3. P. 184—186. doi: 10.1134/S1061830912030060
  5. Li J.F., Liu W.S., Zhao L.D., Zhou M. High-performance nanostructured thermoelectric materials // Npg Asia Mater. 2010. V. 2. Is. 4. P. 152. doi: 10.1038/asiamat.2010.138
  6. Kikuchi M. Dental alloy sorting by the thermoelectric method // European Journal of Dentistry. 2010. V. 4. No. 1. P. 66—70.
  7. Cooper R.F. Sorting mixed metals by the thermoelectric effect // Physics Education. 1976. V. 11. Is. 4. P. 290—292. doi.org/10.1088/0031-9120/11/4/004
  8. Stuart C.M. The Seebeck effect as used for the nondestructive evaluation of metals // Int. Adv. Nondestr. Test. 1983. V. 9.
  9. Stuart C. Thermoelectric Differences Used for Metal Sorting // Journal of Testing and Evaluation. 1987. V. 15. No. 4. P. 224—230. doi.org/10.1520/JTE11013J. ISSN 0090-3973
  10. Dragunov V.K., Goncharov A.L. New approaches to the rational manufacturing of combined constructions by EBW // IOP Conf. Series: Materials Science and Engineering. 2019. V. 681. P. 012010. doi: 10.1088/1757-899X/681/1/012010
  11. Goncharov A., Sliva A., Kharitonov I., Chulkova A., Terentyev E. Research of thermoelectric effects and their influence on electron beam in the process of welding of dissimilar steels // IOP Conference Series Materials Science and Engineering. February 2020. V. 759 (1). P. 012008. doi: 10.1088/1757-899X/759/1/012008
  12. Kharitonov I.A., Rodyakina R.V., Goncharov A.L. Investigation of magnetic properties of various structural classes steels in weak magnetic fields characteristic for generation of thermoelectric currents in electron beam welding // Solid State Phenomena. 2020. V. 299. P. 1201—1207.
  13. Soldatov A.I., Soldatov A.A., Kostina M.A., Kozhemyak O.A. Experimental studies of thermoelectric characteristics of plastically deformed steels ST3, 08KP and 12H18N10T // Key Engineering Materials. 2016. V. 685. P. 310—314.
  14. Soldatov A.I., Soldatov A.A., Sorokin P.V., Abouellail A.A., Obach I.I., Bortalevich V.Y., Shinyakov Y.A., Sukhorukov M.P. An experimental setup for studying electric characteristics of thermocouples // SIBCON 2017 — Proceedings. 2017. P. 79985342017.
  15. Fulton J.P., Wincheski B., Namkung M. Automated weld characterization using the thermoelectric method // Materials Science. August 1993. ID: 262902.
  16. Carreon H., Medina A. Nondestructive characterization of the level of plastic deformation by thermoelectric power measurements in cold-rolled Ti–6Al–4V samples // Materials Science, Nondestructive Testing and Evaluation. 2007. Corpus ID: 136854526. doi: 10.1080/10589750701546960
  17. Carreon H. Detection of fretting damage in aerospace materials by thermoelectric means // Smart Structures, Engineering, Physics. 16 April 2013. Corpus ID: 123131770. doi: 10.1117/12.2009448
  18. Lakshminarayan B., Carreon H., Nagy P. Monitoring of the Level of Residual Stress in Surface Treated Specimens by a Noncontacting Thermoelectric Technique // Materials Science. 9 April 2003. Corpus ID: 135856050, doi: 10.1063/1.1570311
  19. Carreon H. Thermoelectric detection of fretting damage in aerospace materials // Russian Journal of Nondestructive Testing. 2014. V. 11. Corpus ID: 137248032. doi: 10.1134/S1061830914110102
  20. Carreon H. Evaluation of Thermoelectric Methods for the Detection of Fretting Damage in 7075‒T6 and Ti‒6A1‒4V Alloys // Materials Science. 2015. V. 2. Corpus ID: 137547354. doi: 10.1007/978-3-319-48191-3_53
  21. Hu J., Nagy P.B. On the Thermoelectric Effect of Interface Imperfections // Review of Progress in Quantitative Nondestructive Evaluation. 1999. V. 188. P. 1487—1494. doi.org/10.1007/978-1-4615-4791-4_191
  22. Goncharov A.L. Investigation of the thermal electromotive force of steels and alloys of different structural grades in electron beam welding // Welding International. 2011. V. 25. Is. 9. P. 703—709.
  23. Goncharov A.L., Chulkova A.V., Rodyakina R.V., Dragunov V.K., Chulkov I.S. Investigation of thermo-EMF temperature dependences for construction materials of various structural classes // IOP Conf. Series: Materials Science and Engineering. 2019. V. 681. P. 012017. doi: 10.1088/1757-899X/681/1/012017
  24. Korndorf S.F., Melnik E.E. Thermoelectric diagnostic method of cutting tools // Control. Diagnostics. 2003. V. 1. P. 44—46.
  25. Magalhães Ana, De Backer Jeroen, Bolmsjö Gunnar. Thermal Dissipation Effect on Temperature-controlled Friction Stir Welding // Soldagem & Inspeção. 2019. V. 24. P. e2428. https://doi.org/10.1590/0104-9224/SI24.28
  26. Silva Ana C.F., De Backer J., Bolmsjö G. TWT method for temperature measurement during FSW process // The 4th international conference on scientific and technical advances on friction stir welding & processing — FSWP16” in San Sebastian, Spain, 1-2 October 2015. P. 95—98
  27. De Backer J., Bolmsjö G., Christiansson A.-K. Temperature control of robotic friction stir welding using the thermoelectric effect // The International Journal of Advanced Manufacturing Technology. 2014. V. 70. P. 375—383.
  28. Silva Ana C.F., De Backer J., Bolmsjö G. Cooling rate effect on temperature controlled FSW process // IIW International Conference High-Strength Materials — Challenges and Applications, Helsinki, Finland, 2-3 July 2015.
  29. Silva Ana C.F., De Backer J., Bolmsjö G. Analysis of plunge and dwell parameters of robotic FSW using TWT temperature feedback control // 11th International Symposium on FSW — 11ISFSW, Cambridge, UK, 17-19 May 2016.
  30. De Backer J., Bolmsjö G. Thermoelectric method for temperature measurement in friction stir welding // Science and Technology of Welding and Joining. 2013. V. 18.
  31. Silva Ana C.F., De Backer J., Bolmsjö G. Temperature measurements during friction stir welding // Int. J. Adv. Manuf. Technol. 2017. V. 88. P. 2899—2908. doi: 10.1007/s00170-016-9007-4
  32. Beguiristain Aldanondo, Mendizabal Arruti, Zubiria Echeverría. System for measuring temperatures generated during the friction stir welding process / Patent EP 3 725 451 A1. Application number: 17842322.4. 21.10.2020. Bulletin 2020/43.
  33. Plotnikov A.L., Tikhonova Zh.S., Eplov P.E., Pavlov A.S. The physical basis of using the value of a thermoelectric.d.s. natural thermocouple for an operational assessment of the properties of contact pairs «high-speed tool - steel billet» // Izvestiya Volgograd State Technical University. 2017. V. 12 (207). P. 79—83.
  34. Plotnikov A.L., Kristal M.G., Sergeev A.S., Tikhonova Zh.S., Uvarova T.V. Device for measuring the temperature of a cutter with a natural thermocouple / Patent for invention RU 2650827 C1. 17.04.2018.
  35. Chigirinskiy Y., Tikhonova Z., Kraynev D. Method for assessing the thermophysical properties of the contact pair «tool — steel workpiece» // Journal of Physics: Conference Series. "Intelligent Information Technology and Mathematical Modeling 2021, IITMM 2021— Mathematical Modeling and Computational Methods in Problems of Electromagnetism, Electronics and Physics of Welding". 2021. С. 052012.
  36. Tikhonova Z., Kraynev D., Frolov E., Bondarev A., Kozhevnikova A. The ThermoEMF as a Tool for Increasing the Autonomy of Technological Machines // Communications in Computer and Information Science. 2023. 1909 CCIS. С. 143—154.
  37. Tikhonova Z., Kraynev D., Frolov E. Thermo-Emf as Method for Testing Properties of Replaceable Contact Pairs // Lecture Notes in Mechanical Engineering. 2020. С. 1097—1105.
  38. Tikhonova Z., Kraiynev D., Frolov E. Efficiency improvement for assigning of cutting conditions on the basis of the thermo-EMF signal // MATEC Web of Conferences. 2018. V. 224. P. 0106.
  39. Sergeev A.S., Tikhonova Z.S., Uvarova T.V. Method for measuring thermo-emf of a «tool-workpiece» natural thermocouple in chip forming machining // MATEC Web of Conferences. 2017. С. 01044.
  40. Plotnikov A.L., Sergeev A.S., Tikhonova J.S. Features of using the EMF cutting signal in conditions of automated machine tool production // High-tech technologies in mechanical engineering. 2016. V. 6 (60). P. 21—28.
  41. Abouellail A.A., Chang J., Soldatov A.I., Soldatov A.A., Kostina M.A., Bortalevich S.I., Soldatov D.A. Characterization of the influence of destabilizing factors on test results of thermoelectric inspection // Russian Journal of Nondestructive Testing. 2022. V. 58. No. 3, P. 607—616.
  42. Soldatov A.I., Soldatov A.A., Sorokin P.V., Abouellail A.A., Kozhemyak O.A., Loginov E.L., Bortalevich S.I. Control system for device thermotest / В сб. 2016 International Siberian Conference on Control and Communications, SIBCON 2016 — Proceedings. 2016. P. 7491869.
  43. Sorokin P.V., Soldatov A.A., Soldatova M.A. A software and hardware complex for the study of the transient process during express control by the thermopower method // Control. Diagnostics. 2013. V. 13. P. 22—25.
  44. Abouellail A.A., Soldatov D.A., Soldatov A.A. Analysis of the electrical characteristics of the thermoelectric flaw detector sensor // Collection of materials of the All-Russian scientific and methodological conference Modern technologies, economics and education. 2019. P. 17—19.
  45. Milićević I., Popović M., Dučić N., Slavković R., Dragićević S., Maričić A. Experimental Identification of the Degree of Deformation of a Wire Subjected to Bending // Science of Sintering. 2018. V. 50. P. 183—191. DOI: https://doi.org/10.2298/SOS1802183M
  46. Soldatov A.I., Soldatov A.A., Sorokin P.V., Abouellail A.A., Kostina M.A. Thermoelectric method of plastic deformation detection // Materials Science Forum. 2018. V. 938. P. 112—118.
  47. Vasiliev I., Soldatov A., Abouellail A., Soldatov D., Bortalevich S. Thermoelectric Quality Control of the Application of Heat-Conducting Compound // Studies in Systems, Decision and Control. 2021. V. 351. P. 59—68.
  48. Soldatov A.A., Dementiev A.A., Soldatov A.I., Vasiliev I.M. Quality control of the application of a heat-conducting compound // Flaw detection. 2020. V. 3. P. 65—71.
  49. Vasiliev I.M., Dementiev A.A., Soldatov A.A., Soldatov A.I. Thermoelectric quality control method for applying a heat-conducting compound // Flaw detection. 2020. V. 5. P. 28—34.
  50. Soldatov A.I., Soldatov A.A., Vasiliev I.M., Shulgina Yu.V., Kostina M.A., Sorokin P.V. Method of measuring thermal resistance between the body of a semiconductor device and a cooling radiator / Patent for the invention RU 2686859 C1. 05/06/2019.
  51. Vasiliev I.M., Soldatov A.I., Dementiev A.A., Soldatov A.A., Abouellaill A. Automatic device for testing thermal resistance with thermoelectric effect / В сб. Journal of Physics: Conference Series. International Conference "Actual Trends in Radiophysics". 2020. P. 012047.
  52. U.S. Fare Statictics. Available at: https://www.usfa.fema.gov/data/statistics/#causesR/, free. (Accessed: December 16, 2021).
  53. Chechetkina T.A., Goncharenko V.S., Sibirko V.I., Zagumennova M.V. The situation with fires in the Russian Federation in 2021 // Fire safety. 2022. V. 1 (106). P. 98—115.
  54. Titkov V.V., Bekbaev A.B., Sarsenbaev E.A. On the possibilities of monitoring non-stationary thermal processes in the contacts of power electrical installations // Scientific and Technical Bulletin of SPbPU. Natural and engineering sciences. 2017. V. 23. No. 1. P. 168—178.
  55. Chaly A.M., Dmitriev V.A., Pavlenko M.A., Pavleino O.M. Heating of high-current electrical contacts by short-circuit shock currents // Electronic processing of materials. 2013. No. 49 (5). P. 81—88.
  56. Troitskiy O.A., Stashenko V.I., Skvortsov O.B. Vibrations of conductors during transmission of pulsed electric current and non-destructive testing // Engineering Journal: Science and Innovation. Electronic scientific and technical publication. 2018. No. 3. doi: 10.18698/2308-6033-2018-3-174
  57. Chuprova L.V., Ershova O.V., Mullina E.R. Chemical and technological aspects of the problem of oxidation of copper contacts of electrical equipment operated in water purification workshops // Young Scientist. 2013. No. 9 (56). P. 77—80.
  58. Apostolakis G., Kazarians M., Bley D.C. Methodology for assessing the risk from cable fires // Nucl. Saf. 1982. V. 23. Is. 4. ID 5329326.
  59. Delplace M., Vos E. Electric short circuits help the investigator determine where the fire started // Fire Technology. 1983. V. 19. Is. 3. P. 185—191.
  60. Wang Zhi, Wang Jian. Comparative thermal decomposition characteristics and fire behaviors of commercial cables // Journal of Thermal Analysis and Calorimetry. 2020. V. 144. No. 7. P. 1—3. DOI: 10.1007/ s10973-020-10051-z
  61. Lider A.M., Larionov V.V., Syrtanov M.S. Hydrogen concentration measurements at titanium layers by means of thermo-EMF // Key Engineering Materials. 2016. V. 683.
  62. Kudiуarov V.N., Lider A.M., Harchenko S.Y. Hydrogen accumulation in technically pure titanium alloy at saturation from gas atmosphere // Adv. Mater. Res. 2014. V. 880. P. 68—74.
  63. Nestorova Gergana G., Adapa Bindu S., Kopparthy Varun L., Guilbeau Eric J. Lab-on-a-chip thermoelectric DNA biosensor for label-free detection of nucleic acid se-quences // Sensors and Actuators B: Chemical. 31 March 2016. V. 225. P. 174—180.
  64. Ismailov T.A., Evdulov O.V., Ragimova T.A., Medzhidov M.N., Ragimova T.A. Thermoelectric semiconductor device for contrast thermodontometry / Patent RU No.2624804, dated 07.03.2017.
  65. Ismailov T.A., Aminov G.I., Yusufov Sh.A., Medzhidov M.N., Kazumov R.S. Thermoelectric device for temperature diagnostics and electrodontometry of dental condition / Application for invention of the Russian Federation RU No. 2006 106 008, dated 09.11.2006.
  66. Anatychuk L.I., Kobylianskyi R.R., Cherkez R.G., Konstantynovych I.A., Hoshovskyi V.I., Tiumentsev V.A. Thermoelectric device with electronic control unit for diagnostics of inflammatory processes in the human organism // BIOMEDICAL ELECTRONICS, Tekhnologiya i Konstruirovanie v Elektronnoi Apparature. 2017. № 6. P. 44—48. doi: 10.15222/TKEA2017.6.44
  67. Ismailov T.A., Gafurov K.A. Precision measurement of temperature parameters of tissues and cavities of the human body // The eighth International Scientific and technical Conference of students and postgraduates «Radioelectronics, electrical engineering and power engineering»: Collection of scientific tr. Moscow, 2002. V. 1. P. 228.
  68. Ismailov T.A., Gafurov K.A. Application of thermoelectric devices for measuring the thermal conductivity of human body tissues // The Third Russian National Conference on heat exchange: Collection of scientific tr. Moscow, 2002. P. 225—227.
  69. Gafurov K.A. Thermoelectric digital converters for the study of local temperature fields of the human body // Diss. for the degree of Candidate of Technical Sciences. Makhachkala. 2005. 159 P.
  70. Tukmakova A. S., Asach A.V., Makarova E.S., Tkhorzhevsky I.L., Demchenko P. S., Sedinin A.D., Novotelnova A.V., Kablukova N.S., Khodzitsky M.K. Prospects of using nanoscale layers of thermoelectrics for detecting radiation of the terahertz range of elements // Materials of the VII All-Russian Scientific and Technical Committee State and prospects of development thermoelectric instrumentation. Makhachkala. 2020. P. 7—8.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic of temperature control by the tool-piece contact pair method [28]

Download (264KB)
3. Fig. 2. Variation of thermal EMF during welding [28]

Download (335KB)
4. Fig. 3. Stages of friction stir welding with temperature control (red arrows indicate thermoregulator upgrade) [28]

Download (355KB)
5. Fig. 4. Electrical circuit of a natural thermocouple cutting tool-workpiece [34]

Download (372KB)
6. Fig. 5. Sensor design: 1 - first hot electrode; 2 - heating element; 3 - thermocouples; 4 - second hot electrode

Download (298KB)
7. Fig. 6. Thermoelectric control device with differential sensor "THERMOTEST": a - electronics unit; b - differential sensor with a standard and a test sample

Download (980KB)
8. Fig. 7. Program interface

Download (881KB)
9. Fig. 8. Temperature dependence of the thermal EMF of a hot copper electrode for different degrees of plastic deformation (ε) of a steel wire with a diameter of ≈2.8 mm made of stainless steel X5CrNi1810 [45]

Download (656KB)
10. Fig. 9. Dependence of thermal EMF on relative strain (ε) at temperature 40 °C for a wire with diameter ≈2.8 mm from steel X5CrNi1810 [45]

Download (854KB)
11. Fig. 10. Dependence of differential thermal EMF on the strain value: solid line - ST3; dashed line - 08KP; dashed line - 12H18N10T

Download (94KB)
12. Fig. 11. Schematic representation of the object of study (a) and temperature-time slice of heat distribution in the cylinder (b)

Download (425KB)
13. Fig. 12. Dependence of temperature difference on time (a) and thermal paste thickness (b): 1 - specific thermal conductivity of thermal paste 10 times more than nominal; 2 - nominal specific thermal conductivity; 3 - specific thermal conductivity of thermal paste 10 times less than nominal

Download (153KB)
14. Fig. 13. Dependence of thermal EMF on the thickness of the thermal interface layer: a - transient mode; b - steady-state mode

Download (221KB)
15. Fig. 14. Time dependence of the temperature difference between the power device case and the cooling radiator obtained with the help of thermocouples (a) and with the help of thermal EMF recalculation (b): 1 - without thermal interface; 2 - with partially applied thermal interface (50%); 3 - with applied thermal interface

Download (409KB)
16. Fig. 15. Dependence of the thermal EMF on the relative area of the power element housing coverage by the thermal interface

Download (104KB)
17. Fig. 16: Temperature dependence of the contact pair on time, at different values of mass at a resistance equal to 0.1 ohm: - 1 g, 0.2 pix. - 2 g, 3 g

Download (297KB)
18. Fig. 17. Dynamics of change of thermal EMF at the aluminum-copper contact joint during heating (average value for 10 measurements)

Download (445KB)
19. Fig. 18. Dependence of the thermal EMF value on the probe position coordinate: 1 - after hydrogenation after 5 h; 2 - 30 h; 3 - 75 h; 4 - before hydrogenation. The probe temperature is equal to 62°C [61]

Download (111KB)
20. Fig. 19. Construction of thermoelectric sensor of temperature and heat flux: 1 - ebonite insulation shell; 2 - copper liquid cooler (15×15×6 mm); 3 - thermoelectric sensor (10×10×2.4 mm); 4 - copper sensor base (0.3 mm); 5 - copper cooler temperature sensor T3; 6, 7 - inlet and outlet pipes (∅ 4 mm); 8 - copper base temperature sensor T2; 9 - layer of heat conducting paste [64]

Download (212KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies