Application of laser scanning thermography and regression analysis to determine characteristics of defects in polymer composite materials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The method of laser point scanning thermography is highly sensitive and allows for reliable detection of surface and subsurface defects in products made of polymer composite materials. When implementing this method, the use of robotic manipulators as a scanning device makes it possible to inspect small objects with a curved surface or to further examine questionable areas identified by other methods. The article provides information about the layout of a robotic complex for laser scanning thermography based on a five-axis robotic manipulator, laser power up to 3 W and wavelength 405 nm, as well as a COX CG640 thermal imager. A technique for processing experimental data has been proposed and regression models have been developed to make it possible to measure the size of defects along the trajectory and determine their location. To test the protocol, a control sample was made from fiberglass laminate, including artificial defects of the “delamination” type, in the form of squares of various sizes. The coefficient of determination R2 of regression models turned out to be no worse than 0.94, the root mean square error of the defect model and the transverse size were no worse than ±0.2 and ±1.5 mm2, respectively.

Full Text

Restricted Access

About the authors

A. G. Divin

Derzhavin Tambov State University; Tambov State Technical University

Author for correspondence.
Email: divin.ag@tstu.ru
Russian Federation, 392036, Tambov, Internatsionalnaya st., 33; 392000, Tambov, Sovetskaya str., 106/5

S. V. Ponomarev

Tambov State Technical University

Email: divin.ag@tstu.ru
Russian Federation, 392000, Tambov, Sovetskaya str., 106/5

S. V. Mishchenko

Tambov State Technical University

Email: divin.ag@tstu.ru
Russian Federation, 392000, Tambov, Sovetskaya str., 106/5

Yu. A. Zakharov

Derzhavin Tambov State University; Tambov State Technical University

Email: divin.ag@tstu.ru
Russian Federation, 392036, Tambov, Internatsionalnaya st., 33; 392000, Tambov, Sovetskaya str., 106/5

N. A. Karpova

Tambov State Technical University

Email: divin.ag@tstu.ru
Russian Federation, 392000, Tambov, Sovetskaya str., 106/5

A. A. Samodurov

Derzhavin Tambov State University

Email: divin.ag@tstu.ru
Russian Federation, 392036, Tambov, Internatsionalnaya st., 33

D. Yu. Golovin

Derzhavin Tambov State University

Email: nano@tsutmb.ru
Russian Federation, 392036, Tambov, Internatsionalnaya st., 33

A. I. Tyurin

Derzhavin Tambov State University

Email: divin.ag@tstu.ru
Russian Federation, 392036, Tambov, Internatsionalnaya st., 33

References

  1. Shen Q., OmarM., Dongri S. Ultrasonic NDE Techniques for Impact Damage Inspection on CFRP Laminates // J. Mater. Sci. Res. 2011. V. 1. No. 1. doi: 10.5539/jmsr.v1n1p2
  2. Golovin Y.I., Golovin D.Y., Tyurin A.I. Dynamic Thermography for Technical Diagnostics of Materials and Structures // Russ. Metall. 2021. V. 2021. No. 4. doi: 10.1134/S0036029521040091
  3. Chulkov A., Vavilov V., Nesteruk D., Burleigh D., Moskovchenko A. A method and apparatus for characterizing defects in large flat composite structures by Line Scan Thermography and neural network techniques // Frat. ed Integrita Strutt. 2023. V. 17. No. 63. doi: 10.3221/IGF-ESIS.63.11
  4. D’Accardi E., Palumbo D., Galietti U. Experimental Procedure to Assess Depth and Size of Defects with Pulsed Thermography // J. Nondestruct. Eval. 2022. V. 41. No. 2. doi: 10.1007/s10921-022-00870-5
  5. Maldague X.P.V. Introduction to NDT by active infrared thermography // Materials Evaluation. 2002. V. 60. No. 9.
  6. Palumbo D., Cavallo P., Galietti U. An investigation of the stepped thermography technique for defects evaluation in GFRP materials // NDT E. Int. 2019. V. 102. doi: 10.1016/j.ndteint.2018.12.011
  7. Feuillet V., Ibos L., Fois M., Dumoulin J., Candau Y. Defect detection and characterization in composite materials using square pulse thermography coupled with singular value decomposition analysis and thermal quadrupole modeling // NDT E. Int. 2012. V. 51. doi: 10.1016/j.ndteint.2012.06.003
  8. Kaledin V.O., Vyachkina E.A., Vyachkin E.S., Budadin O.N., Kozel’skaya S.O. Applying Ultrasonic Thermotomography and Electric-Loading Thermography for Thermal Characterization of Small-Sized Defects in Complex-Shaped Spatial Composite Structures // Russ. J. Nondestruct. Test. 2020. V. 56. No. 1. doi: 10.1134/S1061830920010052
  9. Budadin O., Razin A., Aniskovich V., Kozelskaya S., Abramova E. New approaches to diagnostics of quality of structures from polymeric composite materials under force and shock impact using the analysis of temperature fields // Journal of Physics: Conference Series. 2020. V. 1636. No. 1. doi: 10.1088/1742- 6596/1636/1/012022
  10. Angioni S.L., Ciampa F., Pinto F., Scarselli G., Almond D.P., Meo M. An Analytical Model for Defect Depth Estimation Using Pulsed Thermography // Exp. Mech. 2016. V. 56. No. 6. doi: 10.1007/s11340-016- 0143-4
  11. D’Accardi E., Palumbo D., Galietti U. A comparison among different way to perform the lock-in multifrequency test in a CFRP composite sample. 2020. doi: 10.21611/qirt.2020.119
  12. Zeng Z., Zhou J., Tao N., Feng L., Zhang C. Absolute peak slope time based thickness measurement using pulsed thermography // Infrared Phys. Technol. 2012. V. 55. No. 2—3. doi: 10.1016/j.infrared.2012.01.005
  13. Rellinger T., Underhill P.R., Krause T.W., Wowk D. Combining eddy current, thermography and laser scanning to characterize low-velocity impact damage in aerospace composite sandwich panels // NDT E. Int. 2021. V. 120. doi: 10.1016/j.ndteint.2021.102421
  14. Vavilov V.P., Shiryaev V.V. The method for determining defect size in thermal testing // Defectoscopiya. 1979. No. 11. P. 101—103.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Sketch of the test sample.

Download (130KB)
3. Fig. 2. Diagram of the laboratory installation: 1 — manipulator; 2 — laser; 3 — controller unit with PWM output; 4 — power supply; 5 — computer; 6 — manipulator controller; 7 — thermal imager; 8 — object of control.

Download (208KB)
4. Fig. 3. Thermograms for defects C3 and C4.

Download (395KB)
5. Fig. 4. Thermograms obtained with a time interval of 2 seconds for sections of the sample containing defects B4, B5 (a) and A4, A5 (b).

Download (520KB)
6. Fig. 5. Thermograms Td(x1, τ – Δτ), Tr(x2, τ) and temperature contrast ΔTmax(τ).

Download (201KB)
7. Fig. 6. Thermogram in the defect zone C 4.

Download (245KB)
8. Fig. 7. Graph of the dependence of the derivative of the temperature field on the x coordinate for the defect C4.

Download (181KB)
9. Fig. 8. Scattering diagram for the regression model of the defect width.

Download (284KB)
10. Fig. 9. The scattering diagram for the regression model of the depth of the defect.

Download (240KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies