Studying the evolution of the power spectra of acoustic radiation during the destruction of a solid body

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

When interpreting acoustic emission (AE) observation data, a model of a crack in the form of a cavity in the shape of an oblate ellipsoid of revolution was used. When the length of its semi-minor axis tends to zero, the ellipsoid models a circular disc-shaped crack. Using data from two amplitude-frequency spectra of AE recorded during the destruction of a concrete sample, distributions of the power of acoustic radiation along the lengths of the semi-axes of the ellipsoidal cavities were constructed. It is shown that by the time the second spectrum is recorded, a redistribution of acoustic radiation occurs in favor of a discrete set of growing main cracks with high semi-major axis lengths and a small opening value.

Full Text

Restricted Access

About the authors

V. T. Belikov

Institute of Geophysics UrB RAS

Author for correspondence.
Email: belik2a@mail.ru
Russian Federation, 620016 Yekaterinburg, Amundsen st., 100

References

  1. Regel V.R., Slutsker A.N., Tomashevsky E.E. Kinetic nature of the strength of solids. Moscow: Nauka, 1974. 560 p.
  2. Panin V.E., Likhachev V.A., Grinyaev Yu.V. Structural levels of deformation of solids. Novosibirsk: Nauka, 1985. 255 p.
  3. Parton V.S., Morozov E.M. Mechanics of elastoplastic fracture. Moscow: Nauka, 1985. 504 p.
  4. Belikov V.T., Ryvkin D.G. Study of the development regimes of the destruction process based on observational data of acoustic emission // Physical mesomechanics. 2017. V. 20. No. 4. P. 77—84.
  5. Greshnikov V.A., Drobot Yu.B. Acoustic emissions. Moscow: Publishing house of standards, 1976. 272 p.
  6. Baranov V.M. Acoustic measurements in nuclear power. Moscow: Energoatomizdat, 1990. 320 p.
  7. Buylo S.I. Physico-mechanical, statistical and chemical aspects of acoustic emission diagnostics. Rostov-on-Don: Southern Federal University Publishing House, 2017. 184 p.
  8. Aleinikov A.L., Belikov V.T., Nemzorov N.I. Acoustic emission in heterogeneous media // Defectoscopiya. 1993. No. 3. P. 31—36.
  9. Stepanova L.N., Petrova E.S., Chernova V.V. Strength testing of a carbon fiber spar using acoustic emission and strain gauge methods // Defectoscopiya. 2018. No. 4. P. 24—30.
  10. Chernov D.V., Matyunin V.M., Barat V.A., Marchenkov A.Yu., Elizarov S.V. Study of the patterns of acoustic emission during the development of fatigue cracks in low-carbon steels // Defectoscopiya. 2018. No. 9. P. 21—30.
  11. Stepanova L.N., Chernova V.V., Kabanov S.I. Analysis of the processes of destruction of carbon fiber samples using acoustic emission and strain measurement // Defectoscopiya. 2023. No. 7. P. 3—13.
  12. Niccolini G., Schiavi A., Tarizzo P., Carpinteri A., Lacidogna G., Manuello A. Scaling in temporal occurrence of quasi-rigid body vibration pulses due to macro-fractures // Phys. Rev. E. 2010. V. 82. No. 4. P. 046115 (1—5).
  13. Schiavi A., Niccolini G., Tarizzo P., Carpinteri A., Lacidogna G., Manuello A. Acoustic emissions at high and low frequencies during compression tests in brittle materials // Strain. 2011. V. 47. No. 2. P. 105—110.
  14. Belikov V.T., Ryvkin D.G. Using the results of observations of acoustic emission to study the structural characteristics of a solid body // Acoustic Journal. 2015. V. 61. No. 5. P. 622—630.
  15. Panteleev I.A. Analysis of the seismic moment tensor of acoustic emission: micromechanisms of granite destruction under three-point bending // Acoustic Journal. 2020. V. 66. No. 6. P. 654—668.
  16. Belikov V.T. Interpretation of the results of observations of acoustic emission in a collapsing solid // Applied mechanics and technical physics. 2023. V. 64. No. 3. P. 199—206. doi: 10.15372/PMTF202215200
  17. Sedov L.I. Continuum mechanics. V. 2. Moscow: Nauka, 1984. 560 p.
  18. Belikov V.T. Conditions for the implementation of possible modes of development of the process of destruction of a solid body, Izvestiya RAS // Mechanics of solids. 2020. No. 2. P. 28—39. doi: 10.31857/S0572329920010055
  19. Isakovich M.A. General acoustics. Moscow: Nauka, 1973. 496 p.
  20. Norden A.P. Short course in differential geometry. Moscow: Fizmatgiz, 1958. 244 p.
  21. Belikov V.T., Ryvkin D.G. Study of changes in the structural characteristics of a solid using amplitude-frequency spectra of acoustic emission // Physical mesomechanics. 2016. V. 19. No. 3. P. 103—109.
  22. Alder P.M. Porous media: geometry and transports. Stoneham: Butterworth-Heinemann, 1992. 544 p.
  23. Levin V.A., Morozov E.M., Matvienko Yu.G. Selected nonlinear problems of fracture mechanics.Moscow: Fizmatlit, 2004. 408 p.
  24. Parton V.Z. Fracture mechanics from theory to practice. Moscow: Nauka, 1990. 240 p.
  25. Landau L.D., Lifshits E.M. Statistical physics. Moscow: Nauka, 1964. 568 p.
  26. Bazarov I.P. Thermodynamics. Moscow: Higher School, 1991. 376 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Amplitude-frequency spectra of AE at time points t1 and t2. The dotted line is the moment of time t1, the solid line is the moment of time t2.

Download (177KB)
3. Fig. 2. Distribution of relative values of acoustic radiation power Cr rel : b = 0.1 microns (a); b = 0.4 microns (b); b = 0.7 µm (c); b = 1 µm (d). The dashed line is the moment of time t1, the solid line is the moment of time t2.

Download (442KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies