Study of additive manufacturing products using neutron imaging

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents the results of studies of additively manufactured metal samples using neutron imaging at the IR-8 research reactor of the National Research Center “Kurchatov Institute” (NRC KI). The advantages and disadvantages of neutron imaging using monochromatic (DRAGON station) and polychromatic (PONI tomograph) neutrons when studying internal structure of the samples are demonstrated.

Full Text

Restricted Access

About the authors

M. Murashev

National Research Center «Kurchatov Institute»

Author for correspondence.
Email: mihail.mmm@inbox.ru
Russian Federation, 123182, Moscow, Akademika Kurchatova pl., 1

V. Em

National Research Center «Kurchatov Institute»

Email: vtem9@mail.ru
Russian Federation, 123182, Moscow, Akademika Kurchatova pl., 1

V. Glazkov

National Research Center «Kurchatov Institute»

Email: vivadin@yandex.ru
Russian Federation, 123182, Moscow, Akademika Kurchatova pl., 1

I. Shishkovsky

Р.N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: shishkowsky@gmail.com
Russian Federation, 443011, Samara, Novo-Sadovaya st., 221

K. Makarenko

Skolkovo Institute of Science and Technology; National University of Science and Technology MISIS

Email: konstantin.makarenko@skoltech.ru
Russian Federation, 121205, Moscow, Bolshoy Boulevard, 30, p. 1; 119049, Moscow Leninskiy Prospekt, 4

E. А. Sulyanova

National Research Center «Kurchatov Institute»

Email: sulyanova.e@crys.ras.ru
Russian Federation, 123182, Moscow, Akademika Kurchatova pl., 1

References

  1. Mercelis P., Kruth J.P. Residual stresses in selective laser sintering and selective laser melting //Rapid prototyping journal. 2006. No. 12. P. 254—265.
  2. Patterson A.E., Messimer S.L., Farrington P.A. Overhanging features and the SLM/DMLS residual stresses problem: Review and future research need // Technologies. 2017. V. 5. No. 2. P. 15—36.
  3. Karpov I.D., Em V.T., Sumin V.V. Measuring Residual Stresses in Vamas International Calibration Block with the Stress Diffractometer of Ir-8 Reactor //Russian Journal of Nondestructive Testing. 2019. V. 55. P. 328—333.
  4. Savchenko N.L., Vorontsov A.V., Utyaganova V.R., Eliseev A.A., Rubtsov V.E., Kolubaev E.A. Features of the structural-phase state of the alloy Ti-6Al-4V in the formation of products using wire-feed electron beam additive manufacturing //OBRABOTKA METALLOV-METAL WORKING AND MATERIAL SCIENCE. 2018. V. 20. №. 4. P. 60—71.
  5. Du Plessis A., Roux S., Waller J., Sperling P., Achilles N., Beerlink A., Métayer J., Sinico M., Probst G., Dewulf W., Bittner F., Endres H., Willner M., Drégelyi-Kiss A., Zikmund T., Laznovsky J., Kaiser J., Pinter P., Dietrich S., Lopez E., Fitzek O., Konrad P. Laboratory X-ray tomography for metal additive manufacturing: Round robin test //Additive Manufacturing. 2019. V. 30. P. 100837.
  6. Petrò S., Pagani L., Moroni G., Scott P.J. Conformance and nonconformance in segmentation-free X-ray computed tomography geometric inspection // Precision Engineering. 2021. V. 72. P. 25—40.
  7. Xiangxi Gao, Chunhu Tao, Shengchuan Wu, Bingqing Chen, Sujun Wu. X-ray imaging of defect population and the effect on high cycle fatigue life of laser additive manufactured Ti6Al4V alloys //International Journal of Fatigue. 2022. V. 162. P. 106979.
  8. Keqiang Zhang, Qiaoyu Meng, Xueqin Zhang, Zhaoliang Qu, Rujie He. Quantitative characterization of defects in stereolithographic additive manufactured ceramic using X-ray computed tomography // Journal of Materials Science & Technology. 2022. V. 118. P. 144—157.
  9. Du Plessis A., Yadroitsev I., Yadroitsava I., Le Roux S.G. X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications //3D Printing and Additive Manufacturing. 2018. V. 5. No. 3. P. 227—247.
  10. Tufyakov N.D., Shtan A.S. Basics of neutron radiography. Atomizdat, 1975, P. 256.
  11. Anderson I.S., McGreevy R.L., Bilheux H.Z. Neutron imaging and applications // Berlin, Germany: Springer US, 2009. P. 987.
  12. Murashev M.M., Glazkov V.P., Em V.T. Visualization of the Diffraction Contrast between the Ferrite and Martensitic Phases of Steel by the Method of Neutron Radiography //Instruments and Experimental Techniques. 2021. V. 64. №. 3. P. 491—495.
  13. Vicente Alvarez M.A., Laliena V., Malamud F., Campo J., Santisteban J. A novel method to obtain integral parameters of the orientation distribution function of textured polycrystals from wavelength-resolved neutron transmission spectra // Journal of Applied Crystallography. 2021. V. 54. No. 3. P. 903—913.
  14. Van Tran K., Woracek R., Kardjilov N., Markötter H., Abou-Ras D., Puplampu S., Förster C., Penumadu D., Dahlberg C.F., Banhart J., Manke I. Torsion of a rectangular bar: Complex phase distribution in 304L steel revealed by neutron tomography // Materials & Design. 2022. V. 222. P. 111037.
  15. Woracek R., Penumadu D., Kardjilov N., Hilger A., Boin M., Banhart J., Manke I. Neutron Bragg edge tomography for phase mapping //Physics Procedia. 2015. V. 69. P. 227—236.
  16. Allman B.E., McMahon P.J., Nugent K.A., Paganin D., Jacobson D.L., Arif M., Werner S.A. Phase radiography with neutrons // Nature. 2000. V. 408. No. 6809. P. 158—159.
  17. Lehmann E.H., Frei G., Vontobel P., Josic L., Kardjilov N., Hilger A., Kockelmann W., Steuwer A. The energy-selective option in neutron imaging // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2009. V. 603. No. 3. P. 429—438.
  18. Schulz M., Böni P., Calzada E., Mühlbauer M., Schillinger B. Energy-dependent neutron imaging with a double crystal monochromator at the ANTARES facility at FRM II //Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2009. V. 605. No. 1—2. P. 33—35.
  19. Somenkov V.A., Glazkov V.P., Em V.T., Gureev A.I., Murashev M.M., Sadykov R.A., Axenov S.N., Tru- nov D.N., Stolyarov A.A., Alexeev A.A., Kravchuk L.V. On the Complex Radiation Diagnostics Facility “Dragon” //Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2019. V. 13. P. 870—876.
  20. Image Processing and Analysis in Java. URL: https://imagej.nih.gov/ij/index.html (date of the application 24.04.2023).
  21. Makarenko K., Dubinin O., Shornikov P., Shishkovsky I. Specific aspects of the transitional layer forming in the aluminium bronze — stainless steel functionally graded structures after laser metal deposition // Procedia CIRP. 2020. V. 94. P. 346—351.
  22. Makarenko K.I., Konev S.D., Dubinin O.N., Shishkovsky I.V. Mechanical characteristics of laser-deposited sandwich structures and quasi-homogeneous alloys of Fe-Cu system // Materials & Design. 2022. V. 224. P. 111313.
  23. Makarenko K., Dubinin O., Shishkovsky I. Direct Energy Deposition of Cu-Fe System Functionally Graded Materials: Miscibility Aspects, Cracking Sources, and Methods of Assisted Manufacturing // Chapter in book: Advanced Additive Manufacturing. Published in 2022 by IntechOpen (London, UK).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The principle of the neutron radiography method: D is the aperture limiting the size of the neutron source; L is the distance from the aperture to the object. The L/D collimation coefficient is a defining characteristic of neural imaging devices, on which spatial resolution directly depends.

Download (330KB)
3. Fig. 2. DRAGON station.

Download (732KB)
4. Fig. 3. A sample with a mesh structure made of CL20es alloy.

Download (391KB)
5. Fig. 4. Samples from functionally graded materials obtained by direct laser cultivation, the arrow indicates the direction of cultivation.

Download (1MB)
6. Fig. 5. Tomographic images of a sample with a mesh structure made of CL20es alloy in three mutually perpendicular projections (a—b). Printing defects are marked with arrows.

Download (1MB)
7. Fig. 6. Tomographic images of sample A in three mutually perpendicular projections. The dotted lines show the directions of the slices.

Download (625KB)
8. Fig. 7. Tomographic image of sample A. The pores along one layer of the print are visible in the highlighted area.

Download (398KB)
9. Figure 8. Comparison of tomographic images of sample A obtained on monochromatic (a—d) and polychromatic (d—z) neutron beams. Additional tomographic sections: b, d — pure austenitic steel; c, e — 25% aluminum bronze and 75% austenitic steel; g, f — 50% aluminum bronze and 50% austenitic steel.

Download (672KB)
10. Fig. 9. Tomographic images of sample B in three mutually perpendicular projections. The dotted line shows the directions of the cut, and the detected pores are marked in the selected area.

Download (596KB)
11. Fig. 10. Tomographic images of sample B in two mutually perpendicular projections, the dotted line shows the direction of the slice.

Download (523KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies