Measurement of ultrasonic pulse arrival time by constructing a signal model to determine its propagation velocity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers several methods of measuring the arrival time of ultrasonic pulses. A method for determining the pulse arrival time based on the construction of a signal model with an adaptive dictionary and the search for the minimum of the target function by the quantum swarm intelligence method is proposed. The results of numerical and modeling experiments on measuring the propagation velocity of ultrasonic waves in various samples are presented. It is shown that the proposed method of determining the time of pulse arrival is more resistant to distortion of the echo waveform arising due to frequency-dependent attenuation in the material of the control object.

Full Text

Restricted Access

About the authors

E. G. Bazulin

ECHO+ Research and Production Center LLC

Author for correspondence.
Email: bazulin@echoplus.ru
Russian Federation, 123458, Moscow, Tvardovskogo St., 8, Technopark “Strogino”

A. A. Krylovich

Moscow Power Engineering Institute (National Research University)

Email: bazulin@echoplus.ru
Russian Federation, 111250, Moscow, Krasnokazarmennaya St., 14

References

  1. Guk V.I., Nakonechnaya O.A. Algorithms for numerical determination of temporal characteristics of acoustic emission signals // Eastern European University of Economics and Management. Cherkasy. 2012. No. 6. P. 73—87.
  2. Ivanov E.S., Pyarvinen A.T., Shagiev N.M. Method for measuring time intervals between two pulse signals (patent) / Pat. SU 429409. Application 1753530/18-10 dated 29.02.1972. Published 25.05.1972. 4 p.
  3. Muravyev V.V., Zlobin D.V., Zemskov T.I., Bezruchyankov G.V., Syaktereva V.V. Implementation of the pulse method for determining the speed of ultrasound with high accuracy // Intelligent Systems in Production. 2021. V. 19. No. 2. P. 13—19. doi: 10.22213/2410-9304-2021-2-13-19
  4. Soldatov A.V., Ivanov N.G. Network frequency estimation in digital relay protection systems based on zero crossing: accuracy characteristics // Relay Protection and Automation. 2013. No. 4. P. 22—25.
  5. Soldatov A.I., Shestakov A.V., Ponomarev S.V. Application of second and third-order envelope methods for determining the temporal position of an echo pulse // Proceedings of Tomsk Polytechnic University. 2010. V. 317. No. 2. P. 63—66.
  6. Dyadyunov A.N., Charikova D.M. Information processing in the pulse-phase radio navigation system // Scientific Bulletin of Moscow State Technical University of Civil Aviation. 2011. No. 164. P. 24—32.
  7. Bychkova I.Yu., Bychkov A.V., Slavutsky L.A. Algorithm for correlation processing of signals in two-beam ultrasonic propagation // Bulletin of Chuvash University. 2017. No. 1. P. 218—224.
  8. Marapov D. Methods of statistics. 2013. Information portal. URL: https://medstatistic.ru/methods/methods.html/ (accessed on 12.10.2023).
  9. Kibzun A.I. Stochastic programming problems with probabilistic criteria. Moscow: FIZMATLIT, 2009. 774 p.
  10. Orlov A.I. Wilcoxon two-sample test — analysis of two myths // Polythematic Network Electronic Scientific Journal of Kuban State Agrarian University. 2014. No. 104 (10). P. 1—21.
  11. Gubler E.V., Genkin A.A. Application of nonparametric statistics criteria in medical and biological research. Leningrad: Medicine, 1973. 144 p.
  12. Nikulin M.S. On the chi-square criterion for continuous distributions // Theory of Probability and its Applications. 1973. V. 18. No. 3. P. 559—568.
  13. Chibisov D.M. Lectures on the asymptotic theory of rank criteria. Moscow: MIAN, 2009. Issue 14. 176 p.
  14. Burda E.A., Bogomolov D.E., Naumenko A.P. Entropy approach in filtering acoustic emission signals // Control. Diagnostics. 2023. V. 26. No. 1. P. 9—14.
  15. Leonidov V.V. Educational and methodical complex on the discipline "Digital Signal Processing". 2019. URL: https://leonidov.su/wp-content/uploads/2020/03/FFT-Lecture-V.V.-Leonidov.pdf (accessed on 12.10.2023).
  16. Hu Hongwei, Tian Jia, Zeng Huijie, Yu Xiaofeng, Wang Xianghong. Ultrasonic Characterization Method of Carbon Nanotubes Orientation Using Sparse Representation // Russian Journal of Nondestructive Testing. 2022. V. 58. No. 2. P. 96—107.
  17. Mallat S.G., Zhang Z. Matching Pursuits with Time-Frequency Dictionaries // IEEE Transactions on Signal Processing. 1993. No. 12. P. 3397—3415.
  18. Rabinovich E.V. Methods and means of signal processing. Tutorial. Novosibirsk: Publishing House of NSTU, 2009. 144 p.
  19. Baskakov S.I. Radio circuits and signals / 3rd ed. Moscow: "Higher School", 2000. 462 p.
  20. Bolotnikova O.V., Tarasov D.V., Tarasov R.V. Linear programming: simplex method and duality. Tutorial. Penza: Publishing House of PSU, 2015. 84 p.
  21. Matrenin P.V., Grif M.G., Sekaev V.G. Methods of stochastic optimization. Novosibirsk: Publishing House of NSTU, 2016. 67 p.
  22. Xiao Fu, Wangsheng Liu, Bin Zhang, Hua Deng. Quantum Behaved Particle Swarm Optimization with Neighborhood Search for Numerical Optimization // Hindawi Publishing Corporation Mathematical Problems in Engineering. V. 2013. Article ID 469723. 10 p.
  23. Karl Deutsch Ultrasonic Thickness Gauge Catalog: URL: https://karldeutsch.ru/product-category/толщиномеры-ультразвуковые/ (accessed on 12.10.2023).
  24. Catalog of ultrasonic thickness gauges produced by NPK "AKS". URL: https://acsys.nt-rt.ru/catalog/tolshhinomery (accessed on 12.10.2023).
  25. Micrometer MKC-25 0.001 CHIZ. URL: https://www.microntools.ru/p/fe/8f/67f4a1306f33a6422654cce6c656/Описание%20типа.pdf (accessed on 12.10.2023).
  26. Quartz generator ECX-53B-DU. URL: https://ecsxtal.com/products/crystals/surface-mount-crystals/ecx-53b-du/ (accessed on 14.09.2023).
  27. Gitis M.B., Khimunin A.S. On diffraction effects in ultrasonic measurements // Acoustic Journal. 1968. V. XIV. No. 4. P. 489–513.
  28. Bazylev P.V., Lugovoy V.A., Snytko S.L., Andrianova N.S., Rudakov V.K. Reference setup for comprehensive measurements of acoustic parameters of solid media // Measuring Equipment. 2023. No. 2. P. 55—62. DOI: https://doi.org/10.32446/0368-1025it.2023-2-55—62
  29. Official website of the company «INKOTES». URL: http://www.encotes.ru/node/25 (accessed on 12.10.2023).
  30. Kristensen R. Introduction to the theory of viscoelasticity. Moscow: Mir, 1974. 228 p.
  31. Maximov Yu.V., Legovich Yu.S., Maximov D.Yu. Modeling of dampers from viscoelastic materials // Journal of Technical Physics. 2021. V. 91. No. 3. P. 388–394.
  32. Official website of the company «ECHO+». URL: https://echoplus.ru/ (accessed on 12.10.2023).
  33. Official website of Karl Deutsch company. URL: https://karldeutsch.ru/ (accessed on 12.10.2023).
  34. Official website of the company «AKS». URL: https://acsys.ru/ (accessed on 12.10.2023).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The measured echo signal (red graph) and the pulse model determined by formula (6) (black graph)

Download (285KB)
3. Fig. 2. The dependence of the relative error on the measurement base.

Download (523KB)
4. Fig. 3. Dependence of the velocity dispersion and attenuation coefficient on the frequency for the steel image.

Download (197KB)
5. Fig. 4. Echo signals and their spectra at the operating frequency of the converter in 5 MHz for steel.

Download (519KB)
6. Fig. 5. Dependence of velocity dispersion and attenuation coefficient on frequency for plexiglass.

Download (225KB)
7. Рис. 6. Эхосигналы и их спектры на рабочей частоте преобразователя в 5 МГц для плексигласа.

Download (402KB)
8. Fig. 7. Dependence of the sound propagation velocity estimate on the sample thickness at frequencies of 5 and 10 MHz.

Download (353KB)
9. Fig. 8. Photo of a sample of different heights.

Download (890KB)
10. Fig. 9. Dependence of the longitudinal wave propagation velocity on thickness when using two thickness gauges and different PEGS.

Download (544KB)
11. Fig. 10. View of the original signal with template subtraction.

Download (375KB)
12. Fig. 11. Echo signals and their spectra at an operating frequency of 5 MHz in a multi-height sample in a step with a thickness of 16 mm.

Download (492KB)
13. Fig. 12. Dependence of the longitudinal wave velocity on the thickness of the step and the number of reflections at a frequency of 5 MHz and 10

Download (452KB)
14. Fig. 13. View of the echo signal of element 17 for the antenna array at a frequency of 5 MHz.

Download (435KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies