Thermal nondestructive testing: traditional approaches and novel trends (review)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In the last years, thermal testing has shown up as a quickly growing nondestructive evaluation technique. This is explained by wide implementation of composite materials in many industrial spheres, first of all, aviation and aerospace. Inspection of composites by means of traditional nondestructive testing (NDT) methods encounters some difficulties, which can successfully be overcome by using thermal NDT. Moreover, an overwhelming progress in development and commercialization of infrared imagers also took place in the last two decades. On the basis of earlier reviews in the field of thermal NDT, the author has attempted to summarize recent achievements in this field, including inspection methodologies and data processing, as well as development of thermal NDT equipment and applications of this technique. The review describes both national achievements and international approaches, which have been lately proposed in thermal NDT thus making this technique a very promising in NDT of some classes of materials and constructions.

Авторлар туралы

V. Vavilov

National Research Tomsk Polytechnic University

Email: vavilov@tpu.ru
Tomsk, Russia

Әдебиет тізімі

  1. Fourier J. Théory du mouvement de la chaleur dans les corps solides, 1er partie // Mémoires de l'Académie des Sciences. 1824. V. 4. P. 185-555. 1826. V. 5. P. 153-246.
  2. Ångstrom M.A.J. New method of determining the thermal conductivity of bodies // Phil. Mag. 1863. No. 25. P.130-142.
  3. Hudson R.D. Infrared system engineering. Wiley-Interscience. 1969. 530 p.
  4. Lloyde J.M. Thermal imaging systems. Plenum Press. New York. USA. 1979. 456 p.
  5. Accetta Joseph S., Shumaker David L. The Infrared and Electro-Optical Systems Handbook / Exec. Editors. V. 1-8. SPIE Optical Engineering Press. Bellingham, Washington, 1993.
  6. Vollmer M., Möllmann K.-P. Infrared Thermal Imaging: Fundamentals, research and applications. Wiley-VCH, Germany, 2010.
  7. Minkina W., Dudzik S. Infrared Thermography: Errors and uncertainties. Wiley, 2009.
  8. Nondestructive Testing Handbook, A.S.N.T. U.S.A. 2001. V. 3. Infrared and Thermal Testing. 714 P.
  9. Infrared methodology and technology. Nondestructive testing monographs and tracts. Gordon and Breach Science Publishers, U.S.A. 1994. V. 7. 526 p.
  10. Maldague X. Nondestructive evaluation of materials by infrared thermography. Springer-Verlag, London, 1993. 440 p.
  11. Almond D., Patel P. Photothermal science and techniques. London: Chapman and Hall, 1996. 230 p.
  12. Maldague X. Theory and practice of infrared technology for nondestructive testing. Wiley Series in Microwave and Optical Engineering. John Wiley & Sons, New York, U.S.A. 2001. 682 p.
  13. Daniels A. Field guide to infrared systems. SPIE Press, Washington, USA. 2006. 120 P.
  14. Kaplan H. Practical Applications of Infrared Thermal Sensing and Imaging Equipment. Tutorial Texts in Optical Engineering, SPIE Press V. TT34, 1999, USA. 164 p.
  15. Breitenstein O., Warta W., Langekamp M. Lock-in thermography. Springer Series in Advanced Microelectronics. V. 10. Springer, 2010. 250 p.
  16. Вавилов В.П. Инфракрасная термография и тепловой контроль. М.: ИД "Спектр", 2015. 545 с.
  17. Будадин О.Н., Вавилов В.П., Абрамова Е.В. Тепловой контроль. М.: ИД "Спектр", 2011.
  18. Будадин О.Н., Потапов А.И., Колганов В.И., Троицкий-Марков Т.Е., Абрамова Е.В. Тепловой неразрушающий контроль изделий. М.: Наука, 2002. 476 с.
  19. Vavilov V., Burleigh D. Infrared thermography and thermal nondestructive testing. Springer Nature, 2019. 595 p.
  20. Чернышева Т.И., Чернышев В.Н. Методы и средства неразрушающего контроля теплофизических свойств материалов. М.: Машиностроение, 2001. 194 с.
  21. Cramer E., Winfree W., Hodges K.L., Koshti A. Status of thermal NDT of space shuttle materials at NASA // Proc. SPIE. April 2006. V. 6205. 9 p. doi: 10.1117/12.669684
  22. Vavilov V.P., Burleigh D.D. Review of pulsed thermal NDT: Physical principles, theory and data processing // NDT & E International. 2015. V. 73. P. 28-52.
  23. Maldague X.P., Zolotoyabko E. Theory and practice of infrared vision (2nd ed.) / Wiley Series in Microwave and Optical Engineering, John Wiley & Son Publ., 2016. 780 p.
  24. Siegel J., Beemer M.F., Shepard S. Automated non-destructive inspection of fused filament fabrication components using Thermographic Signal Reconstruction // Additive Manufacturing. Nov. 2019. V. 31. P. 100923. doi: 10.1016/j.addma.2019.100923
  25. Чулков А.О., Нестерук Д.А., Шагдыров Б.И., Вавилов В.П. Метод и аппаратура инфракрасного и ультразвукового термографического контроля крупногабаритных композиционных изделий сложной формы // Дефектоскопия. 2021. № 7. С. 67-74. doi: 10.31857/S0130308221070083
  26. Obeidat O., Qiuye Yu, Favro L., Xioyan Han. The Effect of heating duration on the quantitative estimation of defect depth using sonic infrared imaging //j. Nondestruct. Eval. Diagnost. and Prognostics of Eng. Systems. March 2021. V 4 (4). P. 1-7. doi: 10.1115/1.4050353
  27. Xiaoyan Han, Jianping Liu, Islam Md. S. Sonic infrared imaging NDE, Proceedings of SPIE / The International Society for Optical Engineering. May 2005. V. 5765. P. 142-147. doi: 10.1117/12.600118
  28. Holland S., Schiefelbein B. Model-based inversion for pulse thermography // Exp. Mech. 2019. V. 59 (4). P. 413-426. doi: 10.1007/s11340-018-00463-2
  29. Holland S.D. First measurements from a new broadband vibrothermography measurement system // Rev. of Quant. Nondestruct. Evaluation. 2007. V. 26. P. 478-483.
  30. Zalameda J.N., Winfree W. Passive thermography measurement of damage depth during composites load testing // Frontiers in Mech. Eng. Apr. 2021. V. 7. P. 651149. doi: 10.3389/fmech.2021.651149
  31. Cramer E.K., Winfree W. The application of principal component analysis using fixed eigenvectors to the Infrared thermographic inspection of the space shuttle thermal protection system / Proc. Quantitative InfraRed Thermography Conf. January 2006. doi: 10.21611/qirt.2006.002
  32. Sun J.G. Quantitative thermal tomography imaging of complex material structures / AIP Conference Proceedings. 2012. V. 1430. P. 507. doi: 10.1063/1.4716269
  33. Roche J.-M., Balageas D.L.Common tools for quantitative time-resolved pulsed and step-heating thermography- part 1: theoretical basis // Quant. Infrared Thermography J. 2014. V. 11. P. 43-56.
  34. Rajic N. Principal Component thermography for flaw contrast enhancement and flaw depth characterization in composite structures // Composite Structures. Dec. 2002. V. 58 (4). P. 521-528. doi: 10.1016/S0263-8223(02)00161-7
  35. Almond D.P., Angioni S., Pickering S.D. A case for NDT expert systems based on the development of the Thermographic NDE Advisory and Guidance System, Insight // Non-Destructive Testing and Condition Monitoring. Sept. 2017. V. 59 (9). P. 473-478. doi: 10.1784/insi.2017.59.9.473
  36. Metz C., Franz P., Fischer C., Wachtendorf V., Maierhofer C. Active thermography for quality assurance of 3D-printed polymer structures / In: Proc. 14th Intern. Conf. Quant. Infr. Thermogr. June 2018. Berlin, Germany. NDT.net Issue: 2019-05. doi: 10.3390/app12125851
  37. Tuschl C., Oswald-Tranta B., Eck S. Scanning inductive thermographic surface defect inspection of long flat or curved work-pieces using rectification targets // Appl. Sciences. 2022. V. 12 (12). P. 5851.
  38. Mayr G., Plank B., Gruber J., Sekelja J., Hendorfer G. Quantitative evaluation of the effective thermal diffusivity for model-based porosity prediction in CFRP // Quant. Infr. Thermogr. J. 2016. V. 13 (1). P. 70-82. doi: 10.1080/17686733.2015.1093310
  39. Netzelmann U., Walle G., Lugin S., Ehlen A., Bessert S., Valeske B. Induction thermography: principle, applications and first steps toward standardization // Quant. Infr. Thermogr. J. 2016. V. 13. No. 2. P. 170-81. doi: 10.1080/17686.733.2016.1145842
  40. Ryu M., Batsale J.-C., Morikawa J. Modelling of dual lock-in method for the simultaneous measurements of thermal diffusivity and thermal effusivity // Intern. J. Heat and Mass Transfer. Dec. 2020. V. 162. P. 120337. doi: 10.1016/j.ijheatmasstransfer.2020.120337
  41. Alhammad M., Avdelidis N.P., Ibarra-Castanedo C., Torbali M.E., Genest M., Zhang H., Zolotas A., Maldgue X.P. Automated impact damage detection technique for composites based on thermographic image processing and machine learning classification // Sensors. 2022. V. 22 (23). Article No. 9031.
  42. Nowakowski A., Kaczmarek M. Active dynamic thermography in medical diagnostics / In: Application of Infrared to Biomedical Sciences. Eds. E.Y. Ng and M. Etehad Tavakol. Springer Nature, Singapore. March 2017. P. 291-310. doi: 10.1007/978-981-10-3147-2_17
  43. Gryś S., Minkina W. Noninvasive methods of active thermographic investigation: Short overview of theoretical foundations with an example of application // Energies. 2022. V. 15. P. 4865. doi: 10.3390/en15134865
  44. Świderski W. IR Thermography nondestructive testing methods of composite materials used in aerospace applications / Proc. Quantitative InfraRed Thermography Asia Conf. Jan. 2015. 7 p. doi: 10.21611/qirt.2015.0016
  45. Gliścińska E., Michalak M., Krucińska I., Strakowska M., Kopeć M., Więcek B. A new thermographic method for determining the thickness of the polymer surface layer in sound-absorbing fibrous composite materials // Polymer Testing. Aug. 2022. V. 115 (2). P. 107748.
  46. Steenackers G., Peeters J., Janssens K. Sublayer composition evaluation of Artwork using active thermography / In: Proc.14 Intern. Conf. on Quant. Infr. Thermogr. Berlin, Germany. June 2018.
  47. Chulkov A.O., Nesteruk D.A., Vavilov V.P., Moskovchenko A.I., Saeed N., Omar M. Optimizing input data for training an artificial neural network used for evaluating defect depth in infrared thermographic nondestructive testing // Infr. Phys. & Techn. 2019. V. 102. P. 103047. doi: 10.1016/j.infrared.2019.103047
  48. Venegas P., Peran J., Usamentiaga R., De Ocáriz I.S. NDT inspection of aeronautical components by projected thermal diffusivity analysis / Proc. 14th International Conference on Quant. Infr. Thermography 2018, June, Berlin, Germany. NDT.net Issue: 2019-05.
  49. Cernuschi F., Bison P. Thirty years of thermal barrier coatings (TBC). Photothermal and thermographic Techniques: Best practices and lessons learned //j. Thermal Spray Techn. March 2022. V. 31 (3). 30 p. doi: 10.1007/s11666-022-01344-w
  50. Meola C., Carlomagno G.M., Squillace A., Vitiello A. Non-destructive evaluation of aerospace materials with lock-in thermography // Measurement Science and Technology. 2006. V. 13. No. 3. P. 380-389. doi: 10.1016/j.engfailanal.2005.02.007
  51. D'Accardi E., Palumbo D., Tamborrino R., Cavallo P., Galietti U. Pulsed Thermography: evaluation and quantitative analysis of defects through different post-processing algorithms. NDT.net Issue: 2019-05. Proc. 14th Intern. Conf. on Quant. Infr. Thermography-2018, 25-29 June 2018, Berlin, Germany. NDT.net Issue: 2019-05.
  52. Švantner M., Muzika L., Moskovchenko A., Pereira C.M.C. Repeatability study of flash-pulse thermographic inspection of carbon-fiber composite samples // Infrared Physics & Technology. Sept. 2022. V. 126. P. 104350. doi: 10.1016/j.infrared.2022.104350
  53. Mulaveesala R., Tuli, S. Theory of frequency modulated thermal wave imaging for nondestructive subsurface defect detection // Applied Physics Letters. 2006. V. 89 (19). Art. No. 191913.
  54. Park H.-S., Choe M.-Y. Research trends in infrared thermography NDT - Ultrasound infrared thermography technology //j. Korean Soc. Nondestr. Test. 2012. V. 32 (3). P. 307-313. doi: 10.7779/JKSNT.2012.32.3.307
  55. Uchida Y., Shiozawa D., Hori M., Kobayashi K., Sakagami T. Advanced technique for thermoelastic stress analysis and dissipation eEnergy evaluation via visible-infrared synchronous measurement // Experimental Mechanics. March 2022. V. 62 (3). P. 459-470.
  56. Runshi Zhang, Xingwang Guo, Mingyuan He.Intelligent pseudo solder detection in PCB using laser-pulsed thermography and neural network // IEEE Sensors J. Nov. 2021. V. 22. No. 1. P. 631-638. doi: 10.1109/JSEN.2021.3129064
  57. Jue Hu, Hai Zhang, Sfarra S., Gargiulo G., Avdelidis N.P., Mingli Zhang, Yang D., Maldague X. Non-destructive imaging of marqueteries based on a new infrared-terahertz fusion technique // Infrared Physics & Technology. June 2022. V. 125 (9). P. 104277. doi: 10.1016/j.infrared.2022.104277
  58. Fernandes H.C., Herrman H.-G., Hai Zhang, Goyo F., Nativio Del Pra J.H. Tarpani J.R. Infrared thermography for impact damage analyses on curved CFRP laminates used in geostationary satellites / In: Proc. 5th Brazilian Conference on Composite Materials - BCCM 5. Jan. 2021. Sao Carlos, Brazil. 7 p.
  59. Panella F.W., Pirinu A. Application of Pulsed Thermography and Post-processing Techniques for CFRP Industrial Components //j. Nondestruct. Eval. 2021. V. 40. P. 52. https://doi.org/10.1007/s10921-021-00776-8
  60. Будадин О.Н., Кульков А.А. Козельская С.О. Способ теплового контроля композитных материалов / Патент РФ № RU 2616438 C1, рег. 23.05.2016, публ. 14.04.2017.
  61. РД-13-04-2006 Методические рекомендации о порядке проведения теплового контроля технических устройств и сооружений, применяемых и эксплуатируемых на опасных производственных объектах. Серия 28. Выпуск 11/ Колл. авт. Под общ. ред. Пуликовского К.Б. М.: Открытое акционерное общество "Научно-технический центр по безопасности в промышленности", 2007,32 с.
  62. Чернышев В.Н., Однолько В.Г., Чернышев А.В. Методы и системы неразрушающего контроля теплозащитных свойств строительных материалов и изделий. М.: ИД "Спектр", 2012. 201 с.
  63. Пономарев Д. Б., Захаренко В.А., Абрамова Е.В. Анализ погрешностей при пирометрических измерениях в производственных условиях // Омский научный вестник. 2019. № 5. C. 94-99. doi: 10.25206/1813-8225-2019-167-94-99
  64. Котовщиков И.О. Разработка методики активного теплового контроля вертолётных лопастей из композиционных материалов / Дисс.. на соискание уч. степени канд. техн. наук. С.-Петербург: ИТМО, 2022. 287 с.
  65. Roemer J., Pieczonka L., Uhl T. Laser spot thermography of welded joints. Diagnostyka, 2014. V. 15. No. 2. P. 43-49.
  66. Mashkov P., Pencheva T., Gyoch B.S. Reflow soldering processes development using infrared thermography / Proc. 32nd Intern. Spring Seminar on Electronics Techn. June 2009. doi: 10.1109/ISSE.2009.5207020
  67. Стороженко В.А. Исследование метода и разработка средств активного теплового контроля неметаллических материалов / Автореферат канд. дисс. Винница: Политехн. институт, 1979. 23 с.
  68. Chulkov A.O., Tuschl C., Nesteruk D.A., OswaldTranta B., Vavilov V.P., Kuimova M.V. The detection and characterization of defects in metal/nonmetal sandwich structures by thermal NDT, and the сomparison of areal heating and scanned linear heating by optical and inductive methods //j. Nondestruct. Eval. 2021. V. 40. Article No. 44. doi: 10.1007/s10921-021-00772-y
  69. Thomson W. (Lord Kelvin). On the dynamical theory of heat / Transactions of the Royal Society of Edinburgh. 1853. V. 20. P. 261-283.
  70. Mignogna R.B., Green R.E., Duke J., Henneke E.G., Reifsnider K.L. Thermographic investigations of high-power ultrasonic heating in materials / Ultrasonics. 7. Guildford, Surrey, UK: IPS Science and Technology Press, 1981. P. 159-163.
  71. Henneke E.G. II, Russell S.S. Vibrothermography / Nondestructive Testing Handbook, 2nd ed. Special Nondestructive Testing Methods. Columbus, OH, USA: American Society for Nondestructive Testing, 1994. V. 9. P. 336-340.
  72. Xiaoyan Han, Jianping Liu, Md. S. Islam. Sonic infrared imaging NDE / Proc. of SPIE - The International Society for Optical Engineering. May 2005. V. 5765. P. 142-147. doi: 10.1117/12.600118
  73. Vavilov V., Nesteruk D.Comparative analysis of optical and ultrasonic stimulation of flaws in composite materials // Rus. J. NDT. 2010. V. 46. No. 2. P. 147-152.
  74. Kremer K.-J. A new technique for online testing of steel products for surface defects / Proc. 3rd European Conf. on Nondestr. Testing. 15-18 Oct. 1984. Florence, Italy. P. 171-186.
  75. Lehtiniemi R., Hartikainen J. An application of induction heating for fast thermal nondestructive evaluation // Rev. Sci. Instrum. 1994. V. 65. P. 2099-2101.
  76. Starman S., Matz V. Automated system for crack detection using infrared thermographic testing / Proc. 4th Intern. CANDU In-service Inspection Workshop and NDT Conf. June 18-21 2012. Toronto, Canada. 7 p. https://www.ndt.net/article/ndt-canada2012/content/papers/19_Starman.pdf.
  77. Chulkov A.O., Tuschl C., Nesteruk D.A., Oswald Tranta B., Vavilov V.P., Kuimova M.V. The detection and characterization of defects in metal/nonmetal sandwich structures by thermal NDT, and a comparison of areal heating and scanned linear heating by optical and inductive methods //j. Nondestr. Eval. 2021. V. 40 (44). doi: 10.1007/s10921-021-00772-y
  78. Vavilov V.P. Noise-limited thermal/infrared nondestructive testing // NDT & E Intern. Jan. 2014. V. 61. P. 16-23.
  79. Degiovanni A., Lamine A.-S., Houlbert A.-S., Maillet D. Identification of subsurface defects using a sensibility analysis / Proc. 4th Europ. Conf. on Comp. Mater. Stuttgart, Germany, 25-28 Sept. 1990. P. 691-695.
  80. Krapez J.-C., Balageas D.L. Early detection of thermal contrast in pulsed stimulated infrared thermography / Proc. Quant. Infr. Thermography QIRT-94, Eurotherm Seminar #42, Sorrento. Italy. 23-26 August 1994. P. 260-266.
  81. Maldague X., Marinetti S. Pulse phase infrared thermography //j. Appl. Phys. 1996. V. 79. P. 2694-2698.
  82. Galmiche F., Vallerand S., Maldague X. Wavelet transform applied to pulsed phase thermography / Proc. V-th Workshop on Advances in Infrared Technology and Applications. Ed. by E. Grinzato, P. Bison and A. Mazzoldi, CNR, Venice, Italy 1999. P. 117-122.
  83. Ibarra-Castanedo C., Gonzalez D., Galmishe F., Maldague X.P., Bendada A. Discrete signal transforms as a tool for processing and analyzing pulsed thermographic data / Proc. SPIE "Thermosense-XXVIII", 2006. V. 6205. P. 620514-1-12.
  84. Gonzales D., Ibarra-Castanedo C., Madruga F., Maldague X.P. Analysis of pulsed thermographic sequences based on Radon transform / Proc. SPIE "Thermosense-XXVIII". 2006. V. 6205. P. 62051N-1-7.
  85. Grinzato E., Bison P.G., Marinetti S., Vavilov V. Non-destructive evaluation of delaminations in fresco plaster using transient infrared thermography / Res. in NDE. Springer-Verlag, New York. 1994. V. 5 (4). P. 257-271.
  86. Shepard S. Temporal noise reduction, compression and analysis of thermographic image data sequences. U.S. Patent No. 6516084. 2003.
  87. Yanjie Wei, Yimin Ye, Hongjun He, Zhilong Su. Multi-frequency fused lock-in thermography in detecting defects at different depths //j. Nondestruct. Eval. Aug. 2022. V. 41 (3). doi: 10.1007/s10921-022-00889-8
  88. Kaur K., Mulaveesala M. An efficient data processing approach for frequency modulated thermal wave imaging for inspection of steel material // Infr. Phys. & Techn. Dec. 2019. V. 103. P. 103083. doi: 10.1016/j.infrared.2019.103083
  89. Vavilov V.P., Shirayev V.V., Kuimova M.V. Time- and phase-domain thermal tomography of composites // Photonics 2018. V. 5 (4). P. 31. doi: 10.3390/photonics5040031
  90. Toivanen J.M., Tarvainen T., Huttunen J.M.J., Savolainen T., Orlande H.R.B., Kaipio J.P., Kolehmaine V. 3D thermal tomography with experimental measurement data // Inter. J. Heat & Mass Transf. Nov. 2014. V. 78. P. 1126-1134.
  91. Ringermacher H.I., Howard D.R., Knight B. Thermal imaging NDT at General Electric / 18th WCNDT. 16-20 April 2012 Durban, South Africa. 4 p. (available on CD).
  92. Hongjin Wang, Sheng-Jen Hsieh. Solving the inverse heat conduction problem in using long square pulse thermography to estimate coating thickness by using SVR models based on restored pseudo heat flux (RPHF) in plane profile //j. Nondestr. Eval. 2018. V. 37. P. 78. DOI: 10.1007/s 10921-018-0535-8
  93. Sakagami T., Izumi Y., Mori N., Kubo S. Development of self-reference lock-in thermography and its application to remote nondestructive inspection of fatigue cracks in steel bridges // Quant. Infr. Thermography Journal. 2010. V. 7 (1). P. 73-84.
  94. Ciliberto A., Cavaccini G., Salvetti O. et al. Porosity detection in composite aeronautical structures // Infr. Phys. & Techn. 2002. V. 43. P. 139-143.
  95. Shark L.K., Matuszewski B.J., Smith J.P., Varley M.R. Automatic feature-based fusion of ultrasonic, radiographic and shearographic images for aerospace NDT // Insight. 2001. V. 43 (9). P. 607-615.
  96. Balageas D., Maldague X., Burleigh D., Vavilov V.P., Oswald-Tranta B., Roche J.-M., Pradere C., Carlomagno G.M. Thermal (IR) and Other NDT Techniques for Improved Material Inspection //j. of Nondestr. Eval. Jan. 2016. V. 35 (18). P. 160-174. doi: 10.1007/s10921-015-0331-7
  97. Saxena A., Raman V., Ng E.Y.K. Study on methods to extract high contrast image in active dynamic thermography // Quant. Infrared Thermogr. J. 2019. V. 16 (3-4). P. 343-259. doi: 10.1080/17686733.2019.1586376
  98. Abdulrahman Y.A., Omar M.A., Said Z., Obeideli F., Abusafieh A., Sankaran G.N. A Taguchi design of experiment approach to pulse and pock-in thermography, applied to CFRP composites //j. Nondestruct. Eval. 2017. V. 36. P. 72. doi: 10.1007/s10921-017-0450-4

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>