Three-dimensional tomography of scattering inhomogeneities by a cylindrical multistatic probing system

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method of three-dimensional ultrasonic tomography based on multi-view probing with multiple emitters and multiple receivers on a cylindrical surface in a wide frequency band is proposed. Emitters and receivers are placed on a ring that moves along the vertical axis. Signal processing is based on the use of matched filtering and is reduced to the calculation of cyclic convolution along the angle and vertical axis, which makes it possible to implement a fast algorithm for recovering of three-dimensional images. To test the method, an experimental setup was developed consisting of 32 emitters and 64 receivers uniformly placed on a ring with a radius of 205 mm. During the experiments, sounding was carried out in air at frequencies from 38 kHz to 43 kHz. As a result, a three-dimensional object of a complex shape is visualized, which confirms the applicability of the proposed method.

作者简介

D. Sukhanov

Tomsk State University

Email: sdy@mail.tsu.ru
Tomsk, Russia

A. Khalil

Tomsk State University

Email: amoon.khalil16@gmail.con
Tomsk, Russia

参考

  1. Sheen D.M., McMakin D.L., Hall T.E. Three-dimensional millimeter-wave imaging for concealed weapon detection // IEEE Trans. Microw. Theory Techn. 2001. V. 49. No. 9. P. 1581-1592.
  2. Zhuge X., Yarovoy A.G. Three-dimensional near-field MIMO array imaging using range migration techniques // IEEE Trans. Image Process. 2012. V. 21. No. 6. P. 3026-3033.
  3. Li J., Stoica P. MIMO Radar Signal Processing. Hoboken, N.-J.: Wiley-IEEE Press, 2008. P. 472.
  4. Dolmatov D.O., Ermoshin N.I., Koneva D.A., Sednev D. A. Application of Nonuniform Fourier Transform to Solving Ultrasonic Tomography Problems with Antenna Arrays // Russ. J. Nondestruct. Test. 2020. V. 56. P. 603-610.
  5. Суханов Д.Я., Халил А. Получение трехмерных акустических изображений на основе широкополосного зондирования системой из множества излучателей и множества приемников // Радиотехника. 2022. № 12. С. 137-146.
  6. Суханов Д.Я., Халил А. Волновая зондирующая система с оптимальной взаимной ориентацией решетки излучателей и решетки приемников для визуализации рассеивающих объектов // Техника радиосвязи. 2022. № 3. С. 62-70.
  7. Goldsmith P.F., Hsieh C., Huguenin G.R., Kapitzky J., Moore E.L. Focal plane imaging systems for millimeter wavelengths // IEEE Transactions on Microwave Theory and Techniques. 1993. V. 41. No. 10. Р. 1664-1675.
  8. Stolt R. Migration by Fourier transform techniques // Geophys. 1978. V. 43. No. 1. Р. 23-48.
  9. Bazulin E.G., Goncharsky A.V., Romanov S.Ya., Seryozhnikov S. Yu. Inverse Problems of Ultrasonic Tomography in Nondestructive Testing: Mathematical Methods and Experiment // Russ. J. Nondestruct. Test. 2019. V. 55. P. 453-462.
  10. Lopez-Sanchez J.M., Fortuny-Guash J. 3-D radar imaging using range migration techniques // IEEE Trans. Antennas. Propag. 2000. V. 48. No. 5. P. 728-737.
  11. Базулин Е.Г. О возможности использования в ультразвуковом контроле двойного сканирования для повышения качества изображения рассеивателей // Акустический журнал. 2001. Т. 47. № 6. С. 741-745.
  12. Khalil A. Implementation of Ultrasonic Tomography of Scatterers Based on a Circular Array / 2022 International Siberian Conference on Control and Communications. Tomsk, Russian Federation. 2022. P. 1-4.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##