Magnetic properties of 09G2S steel, manufactured by selective laser melting and cyclically deformed by tension

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Low-cycle fatigue tests in the elastic-plastic strain region of 09G2S steel specimens manufactured with a laser 3D printer by selective laser melting method (SLS steel) were carried out. The major hysteresis loops and field dependences of the reversible magnetic permeability were measured. It has been established that normalization at 980 °C (1 hour) reduces the ultimate strength of steel 09G2S in 2 times (502 MPa) and increases the relative elongation almost 6 times (34.6%), bringing this steel closer to cast steel 09G2S. The magnetic properties (Нс, Br, µmax) of cast and SLM normalized steel before and after cyclic tests are similar. The main changes in these properties of both cast and SLM steel are observed at the initial stage of low-cycle tests, a further increase in the number of cycles (up to the destruction of the tested samples) does not lead to their significant change. The nature of the change in the magnetoelastic field Hσ, determined from the experimental field dependences of the reversible magnetic permeability, during low-cycle tests for cast and SLM steels is radically different: for cast 09G2S steel the magnetoelastic field Hσ practically does not change with increasing number of cycles, whereas for SLM 09G2S steel a sharp increase of Hσ value by 30% is observed during the first test cycles, which is most likely associated with an increase in residual mechanical stresses.

Авторлар туралы

A. Stashkov

M.N. Mikheev lnstitute of Metal Physics of Ural Branch of Russian Academy of Sciences

Email: stashkov@imp.uran.ru
Yekaterinburg, Russia

A. Nichipuruk

M.N. Mikheev lnstitute of Metal Physics of Ural Branch of Russian Academy of Sciences

Yekaterinburg, Russia

E. Schapova

M.N. Mikheev lnstitute of Metal Physics of Ural Branch of Russian Academy of Sciences

Yekaterinburg, Russia

N. Gordeev

M.N. Mikheev lnstitute of Metal Physics of Ural Branch of Russian Academy of Sciences

Yekaterinburg, Russia

I. Vshivtsev

M.N. Mikheev lnstitute of Metal Physics of Ural Branch of Russian Academy of Sciences

Yekaterinburg, Russia

N. Kazantseva

M.N. Mikheev lnstitute of Metal Physics of Ural Branch of Russian Academy of Sciences

Yekaterinburg, Russia

Әдебиет тізімі

  1. Клюев В.В., Соснин Ф.Р., Ковалев А.В. Неразрушающий контроль и диагностика. Справочник / Под ред. В.В. Клюева. М., 2005.
  2. Yusuf S.M., Cutler S., Gao N. Review: The Impact of Metal Additive Manufacturing on the Aerospace Industry // Metals. 2019. V. 9. P. 1286.
  3. Gisario A., Kazarian M., Martina F., Mehrpouya M. Metal Additive Manufacturing in the Commercial Aviation Industry: A Review // Journal of Manufacturing Systems. 2019. V. 53. P. 124-149.
  4. Bhavar V., Kattire P., Patil V., Khot S., Gujar K., Singh R. A Review on Powder Bed Fusion Technology of Metal Additive Manufacturing / Additive Manufacturing Handbook. CRC Press, 2017.
  5. Blakey-Milner B., Gradl P., Snedden G., Brooks M., Pitot J., Lopez E., Leary M., Berto F., du Plessis A. Metal Additive Manufacturing in Aerospace: A Review // Materials & Design. 2021. V. 209. P. 110008.
  6. Ничипурук А.П., Сташков А.Н., Щапова Е.А., Казанцева Н.В., Макарова М.В. Структура и магнитные свойства стали 09Г2С, полученной методом селективного лазерного сплавления // Физика твердого тела. 2021. Т. 63. Вып. 11. С. 1719-1724.
  7. Masoomi M., Shamsaei N., Winholtz R.A., Milner J.L., Gnäupel-Herold T., Elwany A., Mahmoudi M., Thompson S.M. Residual stress measurements via neutron diffraction of additive manufactured stainless steel 17-4 PH // Data in Brief. 2017. V. 13. P. 408-414.
  8. Ronneberg T., Davies C.M., Hooper P.A. Revealing relationships between porosity, microstructure and mechanical properties of laser powder bed fusion 316L stainless steel through heat treatment // Materials and Design. 2020. V. 189. P. 108481.
  9. Park J.M., Choe J., Kim J.G., Bae J.W., Moon J., Yang S., Kim K.T., Yu J.H., Kim H.S. Superior tensile properties of 1%C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting // Materials Research Letters. 2020. V. 8. P. 1-7.
  10. Zhu Z.G., An X.H., Lu W.J., Li Z.M., Ng F.L., Liao X.Z., Ramamurty U., Nai S.M.L., Wei J. Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy // Materials Research Letters. 2019. V. 7. No. 11. P. 453-459.
  11. Elangeswaran Chola, Cutolo Antonio, Muralidharan Gokula Krishna, Vanmeensel Kim, Van Hooreweder Brecht. Microstructural analysis and fatigue crack initiation modelling of additively manufactured 316L after different heat treatments // Materials and Design. 2020. V. 194. P. 108962.
  12. Cui Luqing, Jiang Fuqing, Deng Dunyong, Xin Tongzheng, Sun Xiaoyu, Taherzadeh Mousavian Reza, Lin Peng Ru, Yang Zhiqing, Moverare Johan. Cyclic response of additive manufactured 316L stainless steel: The role of cell structures // Scripta Materialia. 2021. V. 205. P. 114190.
  13. Li Yajing, Yuan Yutong, Wang Dexin, Fu Sichao, Song Danrong, Vedani Maurizio, Chen Xu. Low cycle fatigue behavior of wire arc additive manufactured and solution annealed 308 L stainless steel // Additive Manufacturing. 2022. V. 52. P. 102688.
  14. Murav′eva Olga, Murav′ev Vitaly, Volkova Ludmila, Kazantseva Nataliya, Nichipuruk Alexander, Stashkov Alexey. Acoustic properties of low-carbon 2% Mn-doped steel manufactured by laser powder bed fusion technology // Additive Manufacturing. 2022. V. 51. P. 102635.
  15. Огнева М.С., Ничипурук А.П., Сташков А.Н. Локальное определение поля наведенной магнитной анизотропии и уровня остаточных механических напряжений в деформированных растяжением объектах из малоуглеродистых сталей // Дефектоскопия. 2016. № 11. С. 3-9.
  16. Stashkov A.N., Schapova E.A., Nichipuruk A.P., Korolev A.V. Magnetic incremental permeability as indicator of compression stress in low-carbon steel // NDT & E International. 2021. V. 118. P. 102398.
  17. Stashkov A.N., Schapova E.A., Afanasiev S.V., Stashkova L.A., Nichipuruk A.P. Estimation of residual stresses in plastically deformed eutectoid steel with different perlite morphology via magnetic parameters // Journal of Magnetism and Magnetic Materials. 2022. V. 546. P. 168850.
  18. Wertheim G.K., Butler M.A., West K.W., Buchanan D.N. Determination of the Gaussian and Lorentzian content of experimental line shapes // Review of Scientific Instruments. 1974. V. 45 (11). P. 1369-1371.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>