Development of methods and devices for air-coupled ultrasonic through transmission testing of large-sized objects made of polymer composite materials

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

It is shown that in order to increase the sensitivity of air-coupled ultrasonic through transmission testing of products made of polymer composite materials, it is necessary to develop highly sensitive low-frequency wideband air-coupled piezoelectric transducers. The methods of providing both high sensitivity and a wideband of air-coupled ultrasonic piezoelectric transducer are considered. Air-coupled ultrasonic highly sensitive broadband piezoelectric transducer based on the use of mosaic contact piezoelectric transducer technology, the choice of optimal matching layers and the use of various options for excitation of piezoelectric transmitter have been proposed and developed. It is shown that by use of mosaic air-coupled low-frequency broadband piezoelectric transducers, it is possible to ensure high sensitivity of testing and ensure the accuracy of measurement of acoustic characteristics (ultrasound velocity, density, etc.) with air-coupled ultrasonic low-frequency through transmission testing of large-sized objects made of polymer composite materials.

Sobre autores

V. Kachanov

National Research University "Moscow Power Engineering Institute

Email: kachanovvk@mail.ru
Moscow, Russia

I. Sokolov

National Research University "Moscow Power Engineering Institute

Moscow, Russia

M. Karavaev

National Research University "Moscow Power Engineering Institute

Moscow, Russia

D. Minaev

The Federal state unitary enterprise "The Federal center for dual-use technologies "Soyuz"

Dzerzhinsky, Russia

Bibliografia

  1. Ермолов И.Н., Ланге Ю.В. Неразрушающий контроль / Справочник. В 7 т. Под общей ред. В.В. Клюева. Т. 3. Ультразвуковой контроль. М.: Машиностроение, 2004. 864 с.
  2. Li H., Zhou Z. Air-Coupled Ultrasonic Signal Processing Method for Detection of Lamination Defects in Molded Composites // Journal of Nondestructive Evaluation. 2017. V. 36, 45. https://doi.org/10.1007/s10921-017-0425-5
  3. Tang J., Zhu W., Qiu X., Song A., Xiang Y., Xuan F. Non-contact phase coded excitation of ultrasonic Lamb wave for blind hole inspection // Ultrasonics. 2021. V. 119.
  4. Hutchins D., Watson R., Davis L., Akanji L., Billson D., Burrascano P., Laureti S., Ricci M. Ultrasonic Propagation in Highly Attenuating Insulation Materials // Sensors. 2020. V. 20.
  5. Kachanov V.K., Sokolov I.V., Karavaev M.A., Kontsov R.V. Selecting Optimum Parameters of Ultrasonic Noncontact Shadow Method for Testing Products Made of Polymer Composite Materials // Russian Journal of Nondestructive Testing. 2020. V. 56. No. 10. P. 831-842.
  6. Качанов В.К., Соколов И.В., Караваев М.А., Концов Р.В. Выбор оптимальных параметров ультразвукового теневого бесконтактного способа контроля изделий из полимерных композитных материалов // Дефектоскопия. 2020. № 10. С. 60-70.
  7. Wang X., Wu H., Zhang X., Zhang D., Gong X., Zhang D. Investigation of a multi-element focused air-coupled transducer // AIP Advances 8. 2018. V. 8. Is. 9.
  8. Asokkumar A., Jasiuniene E., Raišutis R., Kažys R.Comparison of ultrasonic non-contact air-coupled techniques for characterization of impact-type defects in pultruded GFRP composites // Materials. 2021. V. 14. Is. 5.
  9. Patankar V.H., Chaurasia R., Nair P. Design and Development of Instrumentation for Air-Coupled Ultrasonics / Proceedings of the National Seminar & Exhibitionon Non-Destructive Evaluation // NDE. 2009. P. 185-189.
  10. Alvarez-Arenas T., Shrout T., Zhang S., Lee H. J. Air-coupled transducers based on 1-3 connectivity single crystal piezocomposites / 2012 International Ultrasonics Symposium. USA, 2012. P. 2230-2233.
  11. Kažys R., Šliteris R., Šeštokė J., Vladišauskas A. Air-coupled ultrasonic transducers based on an application of the PMN32%PT single crystals // Ferroelectrics. 2015. V. 480. Is. 1. P. 85-91.
  12. Kazys R.J., Sliteris R., Sestoke J. Application of PMN-32PT piezoelectric crystals for novel air-coupled ultrasonic transducers // Physics Procedia. 2015. V. 70. P. 896-900.
  13. Eschler E. Air-coupled Ultrasound Transducers. Wiki of the Chair of Non-destructive Testing. 2016. https://wiki.tum.de/display/zfp/Air-coupled+Ultrasound+Transducers.
  14. Bhardwaj A.M. Application of Non-Contact Ultrasound for In-Line Inspection and Material Qualification / Manufacturing 4 the Future conference, 2014, Hartford, CT.
  15. Bhardwaj A., Patel K., Bhardwaj M., Fetfatsidis K. Application of advanced non-contact ultrasound for composite material qualification // Materials Science. 2014. URL: http://ultrangroup.com/wp-content/uploads/CAMX_SAMPE-Paper-The-Ultran-Group-Submitted.pdf
  16. Качанов В.К., Соколов И.В., Конов М.М., Синицын А.А. Сравнение свойств композитных и мозаичных пьезопреобразователей для УЗ контроля изделий с большим уровнем затухания УЗ сигналов // Дефектоскопия. 2011. № 8. С. 39-53.
  17. Splitt G. Pesocomposite Transdusers - a Milestone for Ultrasonic Testing / 7-th European conference on NDT. Copengagen, 1998. V. 3. P. 2965-2970.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies