Development of an empirical model for damage degree assessment of steel specimens based on the results of acoustic emission signal flow statistical processing

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The study is devoted to acoustic emission (AE) method application for monitoring the state of structural materials at the inelastic and ultimate deformation stages. The possibilities of using the standard AE signal parameters recorded at the inelastic and ultimate deformation stages to assess the damage degree of steel specimens were investigated. It was shown that such parameters as the maximum amplitude of the recorded AE signals and their AE activity did not have a clear correlation with the damage degree of products made of structural steel and alloys. This makes it difficult to apply standard methods for assessing the damage degree of structural steels. The feasibility of monitoring the state of damage of 30KhGSA alloyed steel at the inelastic and ultimate stages by the evaluation of partial activity of the high-energy AE signals weight content was presented. The Kolmogorov-Smirnov criterion was used to separate the processes of ductile and brittle fracture.

Авторлар туралы

A. Marchenkov

National Research University «Moscow Power Engineering Institute»

Moscow, Russia

I. Vasiliev

Mechanical Engineering Research Institute of the Russian Academy of Sciences

Moscow, Russia

D. Chernov

Mechanical Engineering Research Institute of the Russian Academy of Sciences

Email: chernovdv@inbox.ru
Moscow, Russia

D. Zhgut

National Research University «Moscow Power Engineering Institute»

Moscow, Russia

A. Pankina

National Research University «Moscow Power Engineering Institute»

Moscow, Russia

T. Kovaleva

National Research University «Moscow Power Engineering Institute»

Moscow, Russia

E. Kulikova

National Research University «Moscow Power Engineering Institute»

Moscow, Russia

Әдебиет тізімі

  1. Pollock A. Acoustic emission testing. Metals handbook / Edited by. Adrian Pollock. 9 edition. AST International. 1989. V.17. P. 278-294.
  2. Иванов В.И., Барат В.А. Акустико-эмиссионная диагностика. М.: "Спектр", 2017. 368 с.
  3. Makhutov N.A., Ivanov V.I., Sokolova A.G., Vasil'ev I.E., Chernov D.V., Skvortsov D.F., Bubnov M.A. Monitoring composite fiber failure using acoustic emission system, vibration analyzer, and high-speed video recording // Russ. J. Nondestr. Test. 2020. V. 56. No. 12. P. 960-970.
  4. Makhutov N.A., Matvienko Y.G., Vasil'ev I.E., Chernov D.V., Ivanov V.I.Rupture tests of reinforcing fibers and a unidirectional laminate using acoustic emissions // Instruments and Experimental Techniques. 2022. Т. 65. № 2. С. 305-313.
  5. Matvienko Y.G., Vasil'ev I.E., Chernov D.V. Damage and failure of unidirectional laminate by acoustic emission combined with video recording // Acta Mechanica. 2021.
  6. Makhutov N.A., Vasiliev I.E., Chernov D.V., Ivanov V.I., Terent'ev E.V. Adaptation of Methodology for Monitoring Damage Kinetics and Assessing Load-Bearing Capacity in Relation to Steel Products // Russian Journal of Nondestructive Testing. 2022. V. 58. No. 9. P. 800-813. doi: 10.1134/S1061830922090078
  7. Lukonge A., Cao X. Leak detection system for long-distance onshore and offshore gas pipeline using acoustic emission technology. A review // Trans. Indian Inst. Met. 2020. V. 73. P. 1715-1727.
  8. Acoustic emission monitoring of corrosion in steel pipes using Lamb-type helical waves. https://doi.org/10.1177/14759217221105644
  9. Shehadeh M., Osman A., Elbatran A.A., Steel J., Reuben R. Experimental Investigation Using Acoustic Emission Technique for Quasi-Static Cracks in Steel Pipes // Assessment. Machines. 2021. V. 9. P. 73. https://doi.org/10.3390/machines9040073
  10. Louda P., Sharko A., Stepanchikov D. An Acoustic Emission Method for Assessing the Degree of Degradation of Mechanical Properties and Residual Life of Metal Structures under Complex Dynamic Deformation Stresses // Materials. 2021. V. 14. P. 2090.
  11. Uhlmann E., Holznagel T., Clemens R. Practical Approaches for Acoustic Emission Attenuation Modelling to Enable the Process Monitoring of CFRP Machining //j. Manuf. Mater. Process. 2022. No. 6. P. 118. https://doi.org/10.3390/jmmp6050118
  12. Li P., Zhang W., Ye Z., Wang Y., Yang S., Wang L. Analysis of Acoustic Emission Energy from Reinforced Concrete Sewage Pipeline under Full-Scale Loading Test // Appl. Sci. 2022. V. 12. P. 8624. https://doi.org/10.3390/app12178624
  13. Работнов Ю.Н. Ползучесть элементов конструкций. М.: Наука, 2014. 752 с.
  14. Москвичев В.В., Махутов Н.А., Шокин Ю.И., Лепихин А.М., Анискович Е.В., Буров А.Е., Гаденин М.М., Готовко С.А., Доронин С.В., Кашубский Н.И., Москвичев Е.В., Москвичева Л.Ф., Рейзмунт Е.М., Суходоева Н.В., Федорова Е.Н., Филиппова Ю.Ф., Чабан Е.А., Черняев А.П., Чернякова Н.А. Прикладные задачи конструкционной прочности и механики разрушения технических систем. Новосибирск: Наука, 2021. 796 с.
  15. Заводчинская Э.Б. Общие закономерности и критерии разрушения твердых тел на разных масштабных уровнях при длительном нагружении (Обобщающая статья) // Заводская лаборатория. Диагностика материалов. 2022. № 7. С. 48-62. https://doi.org/10.26896/1028-6861-2022-88-7-48-62
  16. Рыбин В.В. Большие пластические деформации и разрушение металлов. М.: Металлургия, 1986. 224с.
  17. Панин В.Е., Лихачев В.А., Гриняев Ю.В. Субструктурные уровни деформации твердых тел. Новосибирск: Наука, 1985. 226 с.
  18. Сарафанов Г.Ф., Перевезенцев В.Н. Закономерности деформационного измельчения структуры металлов и сплавов. Нижний Новгород: "Новые многофункциональные материалы и нанотехнологии", 2007. 96 с.
  19. Tyutin M.R., Botvina L.R., Levin V.P., Beletskii E.N., Sinev I.O., Petersen T.B. Kinetics of damage accumulation in a D16CH alloy during static loading // Russian Metallurgy (Metally). 2022. V. 2022. No. 4. P. 444-451.
  20. Лагутин М.Б. Наглядная математическая статистика. М.: Бином. Лаборатория знаний, 2009.472 с.
  21. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1983. 416 с.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>