Low-velocity impact damage detection in cfrp laminates based on ultrasonic phased-array ndt technique

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

To investigate the delamination characteristics of CFRP laminates in Barely Visible Impact Damage (BVID) state, Low-Velocity Impact Tests (LVIT) and Non-Destructive Testing (NDT) were employed. The energy thresholds of six diverse ply-stacking sequences of laminates in the BVID state were established utilizing visual inspection and contact measurement methods. Ultrasonic phased-array NDT techniques were employed to evaluate quantitatively the magnitude of delamination damage from different viewpoints, including delamination area, shape, and trend variation. Furthermore, the impact resistance of laminates was qualitatively evaluated by analyzing the distinctive delamination damage forms of various specimens to identify the effects of the ply-stacking sequence. The findings of this study demonstrate that reducing the angle disparity between adjacent plies and minimizing the repetition of identical plies can mitigate delamination damage. Additionally, enhancing the ratio of ±45 and 0° plies can improve the flexural stiffness of the structure. Specifically, the ultrasonic phased-array NDT technique was shown to effectively detect delamination damage within the laminate in the BVID state.

Авторлар туралы

Xionghui Zou

Harbin Institute of Technology

Harbin, China

Weicheng Gao

Harbin Institute of Technology

Email: gaoweicheng@sina.com
Harbin, China

Guozeng Liu

Harbin Institute of Technology

Harbin, China

Әдебиет тізімі

  1. Mair R.I. Advanced composite structures research in Australia // Composite Structures. 2002. V. 57 (1-4). P. 3-10.
  2. Georgiadis S., Gunnion A.J., Thomson R.S. et al. Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge // Composite Structures. 2008. V. 86 (1-3). P. 258-268.
  3. Pai Y., Pai K.D., Kini M.V. A review on low velocity impact study of hybrid polymer composites // Materials Today: Proceedings. 2021. V. 46. P. 9073-9078.
  4. Ali M., Joshi S.C. Impact Damage Resistance of CFRP Prepreg Laminates with Dispersed CSP Particles into Ply Interfaces // International Journal of Damage Mechanics. 2012. V. 21 (8). P. 1106-1127.
  5. Goossens S., Berghmans F., Sharif Khodaei Z. et al. Practicalities of BVID detection on aerospace-grade CFRP materials with optical fibre sensors // Composite Structures. 2021. V. 259. P. 113243.
  6. Chen F., Yao W., Jiang W. Experimental and simulation investigation on BVID and CAI behaviors of CFRP laminates manufactured by RTM technology // Engineering Computations. 2021. V. 38 (5). P. 2252-2273.
  7. Mustapha S., Ye L., Dong X. et al. Evaluation of barely visible indentation damage (BVID) in CF/EP sandwich composites using guided wave signals // Mechanical Systems and Signal Processing. 2016. V. 76-77. P. 497-517.
  8. Wei L., Chen J. An integrated modeling of barely visible impact damage imaging of CFRP laminates using pre-modulated waves and experimental validation // Composite Structures. 2023. V. 304. P. 116372.
  9. Thorsson S.I., Waas A.M., Rassaian M. Low-velocity impact predictions of composite laminates using a continuum shell based modeling approach Part b: BVID impact and compression after impact // International Journal of Solids and Structures. 2018. V. 155. P. 201-212.
  10. Ciampa F., Mahmoodi P., Pinto F. et al. Recent Advances in Active Infrared Thermography for Non-Destructive Testing of Aerospace Components // Sensors. 2018. V. 18 (2). P. 609.
  11. Yu B., Blanc R., Soutis C. et al. Evolution of damage during the fatigue of 3D woven glass-fibre reinforced composites subjected to tension-tension loading observed by time-lapse X-ray tomography // Composites Part A: Applied Science and Manufacturing. 2016. V. 82. P. 279-290.
  12. Wang Z., Zhu J., Tian G. et al.Comparative analysis of eddy current pulsed thermography and long pulse thermography for damage detection in metals and composites // NDT & E International. 2019. V. 107. P. 102155.
  13. Geng X., Zhang C., Zhou B. et al. Experiment and simulation for ultrasonic wave propagation in multiple-particle reinforced composites // Ultrasonics. 2023. V. 132. P. 106971.
  14. Saito O., Sen E., Okabe Y. et al. Laser Wavelengths Suitable for Generating Ultrasonic Waves in Resin-Coated Carbon Fibre Composites // Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems. 2020. V. 3 (3). P. 031103.
  15. Taheri H., Hassen A.A. Nondestructive Ultrasonic Inspection of Composite Materials: A Comparative Advantage of Phased Array Ultrasonic // Applied Sciences. 2019. V. 9 (8). P. 1628.
  16. Cao H., Ma M., Jiang M. et al. Experimental Investigation of Impactor Diameter Effect on Low-Velocity Impact Response of CFRP Laminates in a Drop-Weight Impact Event // Materials. 2020. V. 13 (18). P. 4131.
  17. Kamimura H.A.S., Wu S.-Y., Grondin J. et al. Real-Time Passive Acoustic Mapping Using Sparse Matrix Multiplication // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2021. V. 68 (1). P. 164-177.
  18. Caminero M.A., Garc�a-Moreno I., Rodr�guez G.P. et al.Internal damage evaluation of composite structures using phased array ultrasonic technique: Impact damage assessment in CFRP and 3D printed reinforced composites // Composites Part B: Engineering. 2019. V. 165. P. 131-142.
  19. Cao H., Ma M., Jiang M. et al. Experimental Investigation of Impactor Diameter Effect on Low-Velocity Impact Response of CFRP Laminates in a Drop-Weight Impact Event // Materials. 2020. V. 13 (18). P. 4131.
  20. Sadeghi M.Z., Nienheysen P., Arslan S. et al. Damage detection by double-sided ultrasonic assessment in low-velocity impacted CFRP plates // Composite Structures. 2019. V. 208. P. 646-655.
  21. Wang X., He J., Guo W. et al. Three-dimensional damage quantification of low velocity impact damage in thin composite plates using phased-array ultrasound // Ultrasonics. 2021. V. 110. P. 106264.
  22. Liu H., Liu J., Ding Y. et al. Effects of Impactor Geometry on the Low-Velocity Impact Behaviour of Fibre-Reinforced Composites: An Experimental and Theoretical Investigation // Applied Composite Materials. 2020. V. 27 (5). P. 533-553.
  23. Lebaupin Y., Hoang T.-Q.T., Chauvin M. et al. Influence of the stacking sequence on the low-energy impact resistance of flax/PA11 composite // Journal of Composite Materials. 2019. V. 53 (22). P. 3187-3198.
  24. Garc�a-Moreno I., Caminero M., Rodr�guez G. et al. Effect of Thermal Ageing on the Impact Damage Resistance and Tolerance of Carbon-Fibre-Reinforced Epoxy Laminates // Polymers. 2019. V. 11 (1). P. 160.
  25. Sebaey T.A., Gonz�lez E.V., Lopes C.S. et al. Damage resistance and damage tolerance of dispersed CFRP laminates: Design and optimization // Composite Structures. 2013. V. 95. P. 569-576.
  26. ASTM D7136/D7136M-15 standard test method for measuring the damage resistance of a fibre-reinforced polymer matrix composite to a drop-weight impact event.
  27. Chen P., Shen Z., Xiong J. et al. Failure mechanisms of laminated composites subjected to static indentation // Composite Structures. 2006. V. 75 (1-4). P. 489-495.
  28. Fuoss E., Straznicky P.V., Poon C. Effects of stacking sequence on the impact resistance in composite laminates - Part 1: parametric study // Composite Structures. 1998. V. 41 (1). P. 67-77.

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>