Estimation of the segregation in a high carbon cast steel by thermoelectric power means

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

This research study proposes the hot-cold tip thermoelectric power (TEP) method to estimate alloying elements segregation and the microstructure variation of high carbon steel cast in a mold. Optical Emission Spectrometry (OES) showed a higher concentration of carbon, nickel, chromium and aluminum at the ingot center. That elemental saturation produced an increase in perlite content as well as hardness. The non-destructive technique of thermoelectric power was applied varying the hot tip temperature (40 oC, 50 oC, 60 oC, 70 oC), where higher temperature values showed to be more sensitive to segregation and microstructural changes. The statistical analysis showed that the thermoelectric power technique is more sensitive to detect the nickel and chromium concentration changes.

作者简介

L. Hernandez

Instituto de Investigaciones Metalurgicas (UMSNH)

Morelia, Mexico

H. Carreon

Instituto de Investigaciones Metalurgicas (UMSNH)

Email: hcarreon@umich.mx
Morelia, Mexico

A. Bedolla

Instituto de Investigaciones Metalurgicas (UMSNH)

Morelia, Mexico

参考

  1. de la Concepcion V.L., Lorusso H.N., Svoboda H.G. Effect of Carbon Content on Microstructure and Mechanical Properties of Dual Phase Steels // Procedia Mater. Sci. 2015. V. 8. P. 1047-1056.
  2. Abbasi E., Luo Q., Owens D. A comparison of microstructure and mechanical properties of low-alloy-medium-carbon steels after quench-hardening // Mater. Sci. Eng. A. 2018. V. 725. P. 65-75.
  3. Turkmen M. Effect of Carbon Content on Microstructure and Mechanical Properties of Powder Metallurgy Steels // Powder Metall. Met. Ceram. 2016. V. 55. No. 3, 4. P. 164-171.
  4. Mohd Fauzi M.A., Saud S.N., Hamzah E., Mamat M.F., Ming L.J. In Vitro Microstructure, Mechanical Properties and Corrosion Behaviour of Low, Medium and High Carbon Steel Under Different Heat Treatments //j. Bio-Tribo-Corrosion. 2019. V. 5. No. 2.
  5. Guo D., Hou Z., Peng Z., Liu Q., Chang Y., Cao J. Influence of superheat on macrosegregation in continuously cast steel billet from statistical maximum viewpoint // ISIJ Int. 2021. V. 61. No. 3. P. 844-852.
  6. Choudhary S.K., Ganguly S. Morphology and segregation in continuously cast high carbon steel billets // ISIJ Int. 2007. V. 47. No. 12. P. 1759-1766.
  7. Wang W., bing Hou Z., Chang Y., hai Cao J. Effect of superheat on quality of central equiaxed grain zone of continuously cast bearing steel billet based on two-dimensional segregation ratio //j. Iron Steel Res.Int. 2018. V. 25. No. 1. P. 9-18.
  8. Krauss G. Solidification, Segregation, and Banding in Carbon and Alloy Steels // Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 2003. V. 34. No. 6. P. 781-792.
  9. Flemings M.C. Our understanding of macrosegregation: Past and present // ISIJ Int. 2000. V. 40. No. 9. P. 833-841.
  10. Khan F.A. The effect of soaking on segregation and primary-carbide dissolution in ingot-cast bearing steel // Metals (Basel). 2018. V. 8. No. 10.
  11. Lan P., Tang H., Zhang J. Solidification Microstructure, Segregation, and Shrinkage of Fe-Mn-C Twinning-Induced Plasticity Steel by Simulation and Experiment // Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2016. V. 47. No. 6. P. 2964-2984.
  12. Ennis B.L., Jimenez-Melero E., Mostert R., Santillana B., Lee P.D. The role of aluminium in chemical and phase segregation in a TRIP-assisted dual phase steel // Acta Mater. 2016. V. 115. P. 132-142.
  13. Ji Y., Li Y., Li S., Zhang X., Zhang J. Central segregation of high-carbon steel billet and its heredity to the hot-rolled wire rods // TMS Annu. Meet. 2016. P. 625-633.
  14. Leuschke U., Puwada N.R., Senk D. Influence of micro-segregation in Pb-S-alloyed free machining steels on the surface quality of the rolled wire-rod // Metall. Ital. 2008. V. 100. No. 5. P. 5-11.
  15. Das S., Mathura J., Bhattacharyya T., Bhattacharyya S. Metallurgical investigation of different causes of center bursting led to wire breakage during production // Case Stud. Eng. Fail. Anal. 2013. V. 1. No. 1. P. 32-36.
  16. Liu L., Sun J., Wang H. Failure analysis procedure of steel wire drawing fracture // 13th Int. Conf. Fract. 2013. ICF 2013. V. 2. P. 1641-1647.
  17. Madhuri V., Gobinath R., Balachandran G. Effect of Carbon on the Microstructure and Mechanical Properties in Wire Rods Used for the Manufacture of Cold Heading Quality Steels // Trans. Indian Inst. Met. 2019. V. 72. No. 1. P. 155-166.
  18. Palit P., Das S., Mathur J. Metallurgical investigation of wire breakage of tyre bead grade // Case Stud. Eng. Fail. Anal. 2015. V. 4. P. 83-87.
  19. ASTM E-381-01 Standard Method of Macroetch Testing Steel Bars, Billets, Bloom, and Forgings.
  20. Rowe D., Bhandari C. CRC Handbook of THERMOELECTRICS. 1995.
  21. Lavaire N., Merlin J., Sardoy V. Study of Ageing in Strained Ultra and Extra Low // Scr. Mater. 2001. V. 44. P. 553-559.
  22. Lavaire N., Massardier V., Merlin J. Quantitative evaluation of the interstitial content (C and/or N) in solid solution in extra-mild steels by thermoelectric power measurements // Scr. Mater. 2004. V. 50. No. 1. P. 131-135.
  23. Soldatov A.I., Soldatov A.A., Kostina M.A., Kozhemyak O.A. Experimental studies of thermoelectric characteristics of plastically deformed steels ST3, 08KP and 12H18N10T // Key Eng. Mater. 2016. V. 685. P. 310-314.
  24. Caballero F.G., Capdevila C., Alvarez L.F., Garcia de Andres C. Thermoelectric power studies on a martensitic stainless steel // Scr. Mater. 2004. V. 50. No. 7. P. 1061-1066.
  25. Benkirat D., Merle P., Borrelly R. Effects of precipitation on the thermoelectric power of iron-carbon alloys // Acta Metall. 1988. V. 36. No. 3. P. 613-620.
  26. Brahmy R.B.A. Manganese enrichment of cementite and solubility of carbon in low carbon steels investigated by thermoelectric power measurements. 1994.
  27. Perez M., Massardier V., Kleber X. Thermoelectric power applied to metallurgy: Principle and recent applications // Int. J. Mater. Res. 2009. V. 100. No. 10. P. 1461-1465.
  28. MacDonald D.K.C. Thermoelectricity: An Introduction to Principles. Jhon Wiley, 2006.
  29. Kleber X., De Lyon I. Surface and Subsurface Metallic Inclusions Detected using Hot Tip Thermoelectric Power Measurements // ECNDT. 2006. P. 1-8.
  30. Simonet L., Kleber X., Fouquet F., Saillet S. Characterization of Segregated Areas in Ferritic Steels by Thermoelectric Power Measurement // Eur. Conf. NDE. 2006. P. 1-9.
  31. Xiao Y., Li W., Zhao H.S., Lu X.W., Jin X.J. Investigation of carbon segregation during low temperature tempering in a medium carbon steel // Mater. Charact. 2016. V. 117. P. 84-90.
  32. Carreon H. Thermoelectric detection of fretting damage in aerospace materials // Russ. J. Nondestruct. Test. 2014. V. 50. P. 684-692.
  33. Lukhvich A.A., Sharando V.I., Novikov S.A. Applications of thermoelectric method to studying initial stages of deposition of electrolytic coatings // Russ. J. Nondestruct. Test. 2000. V. 36. P. 465-470.
  34. Abouellail A.A., Chang T., Soldatov A.I. Laboratory Substantiation of Thermoelectric Method for Monitoring Contact Resistance // Russ. J. Nondestruct. Test. 2022. V. 58. No. 12. P. 1153-1161.
  35. Abouellail A.A., Chang J., Soldatov A.I. Influence of Destabilizing Factors on Results of Thermoelectric Testing // Russ. J. Nondestruct. Test. 2022.V. 58. No. 7. P. 607-616.

版权所有 © Russian Academy of Sciences, 2023

##common.cookie##