Analytical models of stationary nonlinear gravitational waves


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Euler’s equations with standard boundary conditions for the problem of potential surface waves of an arbitrary amplitude in a homogeneous liquid layer with a flat bottom are converted into the new system, including integral and differential equations for the of the potential and its time derivative near the surface. The basic formula of the theory of infinitesimal waves, paired Korteweg-de Vries (KdV) and Kadomtsev− Petviashvili (KP) equations, the envelope Zakharov−Shabat soliton follows from the system in limiting case. The resulting generalized equation, unlike traditional KdFand KP-equations is suitable for the description of waves on the surface of the initially quiescent fluid. A new exact solutions for gravity waves in a deep water, expressed in terms of complex Lambert’s functions are constructed.

Sobre autores

A. Kistovich

Institute for Problems in Mechanics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: kavmendeleevo@mail.ru
Rússia, pr. Vernadskogo 101, block 1, Moscow, 119526

Yu. Chashechkin

Institute for Problems in Mechanics of the Russian Academy of Sciences

Email: kavmendeleevo@mail.ru
Rússia, pr. Vernadskogo 101, block 1, Moscow, 119526

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016