Runoff Predictions in Ungauged Arctic Basins Using Conceptual Models Forced by Reanalysis Data


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Due to global warming, the problem of assessing water resources and their vulnerability to climate drivers in the Arctic region has become a focus in the recent years. This study is aimed at investigating three lumped hydrological models to predict daily runoff of large-scale Arctic basins in the case of substantial data scarcity. All models were driven only by meteorological forcing reanalysis dataset without any additional information about landscape, soil, or vegetation cover properties of the studied basins. Model parameter regionalization based on transferring the whole parameter set showed good efficiency for predictions in ungauged basins. We run a blind test of the proposed methodology for ensemble runoff predictions on five sub-basins, for which only monthly observations were available, and obtained promising results for current water resources assessment for a broad domain of ungauged basins in the Russian Arctic.

Негізгі сөздер

Авторлар туралы

G. Ayzel

Institute of Earth and Environmental Science, University of Potsdam; Water Problems Institute, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: ayzel@uni-potsdam.de
Германия, Potsdam, 14476; Moscow, 119333

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018