


卷 73, 编号 3 (2018)
- 年: 2018
- 文章: 14
- URL: https://journals.rcsi.science/0096-3925/issue/view/10609
Review
Role of Platelets in Neuroinflammatory Disorders. A Review
摘要
Platelets, or thrombocytes, are important players in inflammation, wound healing, initiation of immune response and regeneration in the organism. Disruption of the blood-brain barrier occurs during certain neurological disorders, such as brain trauma, Alzheimer’s disease or stroke, when blood cells including platelets can invade nervous tissue. However, the role of platelets in the context of neuroinflammation remains understudied. Recent studies have shown that activated platelets release a wide set of coagulative and vascular factors during neurovascular pathologies in the central nervous system. Moreover, platelets stimulate immunity and regulate inflammation in the central nervous system. Trophic and growth factors stored in platelets may play a role in neuronal regeneration. Activated platelets release neurotransmitters, serotonin, dopamine, histamine, and glutamate, and can modify neuronal cell activity in neuropathologies. This review focuses on the major aspects and mechanisms of platelet functions in neuroinflammation, and therapeutic potential of platelets for treatment of neurodegenerative disorders.



Soil Microbial Communities of Eastern Antarctica
摘要
Investigation of microbial communities of Antarctica soils is a very important field of research that expands our knowledge of microbial participation in primary soil formation and specific features of their communities in extreme habitats, and it is of considerable interest in directed search of for microorganisms as potential biotechnological objects. The results of long-term (2012–2017) complex studies on soil microbial communities of the Russian East Antarctica polar stations at Shirmakher oasis (Novolazarevskaya station), the Larsemann Hills (Progress station), and the Tala Hills (Molodezhnaya station) are presented in this review. The assessment of biomass of soil microorganisms by the methods of direct microscopy has been carried out for the first time for this region. The general amount of microbial biomass is small; the fungi dominate (77–99%). The unique features of Antarctic soils are the high content and morphological diversity of small forms of microorganisms: fungi are presented by mainly single-celled structures (small spores and yeasts), while bacteria by ultrafine (filtering) forms. At the same time, microorganisms can significantly contribute to such important ecological functions of soil as the emission of greenhouse gases, especially during the warm season with the stable positive temperatures of the soil. This should be considered during creation of models and forecasts of global warming. The use of various isolation techniques for the analysis of the soil microbial population, together with the succession approach, significantly expand the information about taxonomic diversity of cultivated fungi and bacteria in Antarctica soils.



Biophysics
Fluorescence Induction Kinetics in Membrane Preparations of Photosystem II with Heterogeneous Metal Clusters (Mn/Fe) in the Oxygen-Evolving Complex
摘要
Transport of electrons in spinach photosystem II (PSII) whose oxygen-evolving complex (OEC) contains heterogeneous metal clusters 2Mn2Fe and 3Mn1Fe was studied by measuring the fluorescence induction kinetics (FIK). PSII(2Mn,2Fe) and PSII(3Mn,1Fe) preparations were produced using Cadepleted PSII membranes (PSII(–Ca)). It was found that FIK in PSII(2Mn,2Fe) membranes is similar in form to FIK in PSII(–Ca) samples, but the fluorescence yield is lower in PSII(2Mn,2Fe). The results demonstrate that, just as in PSII(–Ca) preparations, there is electron transfer from the metal cluster in the OEC to the primary plastoquinone electron acceptor QA. They also show that partial substitution of Mn cations with Fe has no effect on the electron transport on the acceptor side of PSII. Thus, these data demonstrate the possibility of water oxidation either by the heterogeneous metal cluster or just by the manganese dimer. We established that FIK in PSII(3Mn,1Fe) preparations are similar in form to FIK in PSII(2Mn,2Fe) membranes but PSII(3Mn,1Fe) is characterized by a slightly higher maximal fluorescence yield, Fmax. The electron transfer rate in PSII(3Mn,1Fe) preparations significantly (by a factor of two) increases in the presence of Ca2+, whereas Ca2+ has hardly any effect on the electron transport in PSII(2Mn,2Fe) membranes. In Mndepleted PSII membranes, FIK reaches its maximum (the so-called peak K), after which the fluorescence yield starts to decrease as the result of two factors: the oxidation of reduced primary plastoquinone QA− and the absence of electron influx from the donor side of PSII. The replacement of Mn cations by Fe in PSII(‒Mn) preparations leads to fluorescence saturation and disappearance of the K peak. This is possibly due to the deceleration of the charge recombination process that takes place between reduced primary electron acceptor QA− and oxidized tyrosine YZ+. which is an electron carrier between the OEC and the primary electron donor P680.



Possibilities of Optical Monitoring of Phosphorus Starvation in Suspensions of Microalga Chlorella vulgaris IPPAS C-1 (Chlorophyceae)
摘要
Studies of the impact of inorganic phosphorus (Pi), an important nutrient, on the growth and physiological parameters of single-celled algae are important for investigations of the dynamics of phytoplankton abundance and productivity in natural ecosystems as well as in industrial systems for the cultivation of microalgae. Difficulties in carrying out such studies are associated with the complex kinetics of Pi uptake by cells and the ability of microalgae to store phosphorus in their cells. This situation necessitates efficient methods for express monitoring of microalgal cultures, such as the methods based on the registration of optical properties of cells, in particular absorption and scattering of light and fluorescence of chlorophyll contained in the cells. Here, the results of monitoring the cultures of the chlorophyte Chlorella vulgaris IPPAS C-1 starving for phosphorus are described. It was found that both optical (light absorption in the bands of the key pigments—chlorophylls and carotenoids) and luminescent (variable fluorescence of chlorophyll) parameters closely reflect the culture condition. Registration of optical properties required correction for the contribution of light scattering to the overall extinction of light by microalgal cell suspensions. At the same time, the light scattering signal is an accurate measure of the total number of suspended particles in the suspension. However, it is difficult to monitor cultures containing a significant amount of light-scattering particles lacking photosynthetic pigments (such as heterotrophic bacteria). For such cultures, the use of variable fluorescence- based parameter Fv/Fm reflecting the maximum photochemical efficiency of the photosystem II is advisable.



Gerontology
Impairment of the Viability of Transformed Chinese Hamster Cells in a Nonsubcultured Culture under the Influence of Exogenous Oxidized Guanoside is Manifested Only in the Stationary Phase of Growth
摘要
Despite the fact that oxidation products of nucleotides and nucleosides are markers of oxidative stress, reports of the paradoxical ability of these compounds to protect cells from the harmful effects of reactive oxygen species began to appear more often. Among all nitrogenous bases, guanine is most susceptible to the influence of oxidative stress; therefore, guanosine is oxidized more often than other bases. In the present work, the effect of exogenous 8-oxo-2′-deoxyguanosine on the growth and “stationary phase aging” (accumulation of “age-related” changes in cultured cells during cell proliferation slowing down within a single passage and subsequent “aging” in the stationary growth phase) of nonsubcultured transformed Chinese hamster cells was studied. We showed that the nucleoside is rapidly absorbed by the cells from the medium, but it does not affect the growth of the culture, and impairs the viability of the cells in the late stationary growth phase. Thus, no mitogenic or geroprotective effect of 8-oxo-2′-deoxyguanosine was found.



Hydrobiology
Spatial Distribution of Picophytoplankton in the White Sea in the Beginning of Summer
摘要
Biomass of photosynthetic picoplankton (Bpic), its contribution to the total phytoplankton biomass (Bpic%), chlorophyll a concentration (Chl), and associated hydrophysical characteristics of the water masses in the White Sea were estimated in June 2015 at 47 stations located in the open parts and in the inlets of the Onega and Kandalaksha Bays and in the western part of the Basin. Spatial variability of mean values of Bpic in the photic layer (0.01–1.91 mg C/m3) was preconditioned by sub- and mesoscale heterogeneity of the hydrological conditions. The values of Bpic were higher near the frontal zones than those in the water masses characterized by quasi-homogeneous distribution of the thermohaline characteristics. The relative contribution of Bpic did not exceed 1% at half of the stations and varied from 1 to 8% for the rest of the studied water area. The value of Bpic% reached 40.5% in the Basin and did not exceed 2% during the phytoplankton bloom in Knyazhaya Inlet (Chl > 3 mg/m3) accompanied by the dominance of Skeletonema costatum sensu lato.



Zoology
Rejection Mechanism of Plectolophous Lophophore of Brachiopod Coptothyris grayi (Terebratulida, Rhynchonelliformea)
摘要
Brachiopoda is a relict group of invertebrate filter feeders that used a tentacle organ, lophophore, for capturing food particles from the water column. Brachiopod extinction apparently occurred due to low productivity of their filtering organ in comparison with more advanced filter-feeders. Investigation of the filtering mechanism of modern brachiopods is essential to understanding their evolutionary fate. This study is devoted to the rejection mechanism of large waste particles from the plectolophous lophophore of brachiopod Coptothyris grayi. The waste particles gather inside of the lophophore on the outer side of the brachial fold. The particles form rows along frontal grooves of outer tentacles and are carried successively to the tentacle tips and move along them, slimed by mucus. One portion of the particles comes off the lophophore and falls down the mantle, while another part is carried to the abfrontal surface of the tentacles. Due to repeated reversals of abfrontal cilia, the particles wavily move along the abfrontal surface of tentacles. Such movement contributes to the secretion of mucus and the formation of particle clots. The clots come off the lophophore and fall down the mantle. The particles are transported along the mantle by cilia to the anterior part of the mantle margin. Here the ciliary reversals that facilitate secretion of mucus and formation of pseudofeces also take place. The latter takes away from the mantle cavity. Thus, only outer tentacles participate in the rejection of large waste particles from the lophophore. Ciliary reversals of the abfrontal surface of tentacles and the mantle are discovered in brachiopods for the first time. This facilitates the additional secretion of mucus and formation of pseudofeces, easing their exit from the mantle cavity. The results contribute to the knowledge of lophophore function and evolution of tentacle organs in Bilateria.



Methods
Purification of RNA Polymerase Elongation Complexes for Cryoelectron Microscopy Investigation
摘要
A procedure was developed for the preparation of a stalled elongation complex of Escherichia coli RNA polymerase with the nucleosome for investigation by cryo-electron microscopy. We purified the complex from the excess of free RNA polymerase and unproductive complexes on heparin resin and concentrated it on an affine monolayer formed by lipids bound to Ni ions. The use of affinity grids with an immobilized lipid monolayer helps to prevent aggregation of the particles on the grid surface. This technique can be used in the future to obtain a three-dimensional reconstruction of the EC+39 elongation complex.



Microbiology
Effect of Organic Nutrients on the Activity of Archaea of the Ferroplasmaceae Family
摘要
The effect of different organic compounds (glucose, fructose, ribose, glycine, alanine, pyruvate, acetate, citrate, and yeast extract) as well as of the wastes of food production (molasses, stillage, sweet whey), on the growth of iron-oxidizing acidophilic microorganisms and biooxidation of ferrous iron was studied. Representatives of the microorganisms predominating in biohydrometallurgical processes—archaea of the family Ferroplasmaceae (A. aeolicum V1T, A. cupricumulans BH2T, Acidiplasma sp. MBA-1, Ferroplasma acidiphilum B-1) and bacteria of the genus Sulfobacillus (S. thermosulfidooxidans SH 10–1, S. thermotolerans Kr1T)—were the subjects of the study. All studied strains most actively grew and oxidized ferrous iron in the presence of yeast extract, which is probably due to the presence of a large number of different growth factors in its composition, while others substrates provided growth of microorganisms and ferrous iron oxidation.



Use of the Phenol-Degrading Pseudomonas aeruginosa Strain 21SG for Industrial Wastewater Decontamination
摘要
The features of a phenol-degrading Pseudomonas aeruginosa strain 21SG isolated from the soil at the territory of Russia’s largest manufacturing facility for synthetic tanning agents (city of Ufa, Bashkortostan Republic) are reported. The strain identification was based on cultural, morphological, physiological, biochemical, and morphometric features and on the results of comparative analysis of 16S rRNA gene sequences. The growth of P. aeruginosa 21SG was assessed in batch culture, and a decrease of phenol content in the culture liquid by 84% of the control level after 4 days was observed. The possibility of using P. aeruginosa 21SG for the destruction of phenol present in wastewater from the petrochemical industry and tanning extract production facilities was detected.



Molecular Biology
Reversibility of Structural Rearrangements in Mononucleosomes Induced by Ionic Strength
摘要
Using fluorescence microscopy of single particles with Förster resonance energy transfer recording, structural rearrangements that occurred in nucleosomes formed on the 603 DNA template at high ionic strength were studied. Within the range of 0.7–1.3 M KCl, large-scale changes occurred in the nucleosome structure, including the formation of at least two states differing in the degree of DNA unwrapping from the histone octamer and affecting from 13 to 35 and more pairs of nucleotides. Content of the fraction of nucleosomes with modified structure varied from 60% at 0.7 M KCl to 100% at 1.3 M KCl. Preservation of the association between core histones and DNA in the new conformational states ensured reversibility of structural changes when KCl concentration was reduced to a physiological level. Reversibility was ~100% upon transition from 0.7 M to 0.15 KCl and decreased to ~50% upon transition from 1.3 M to 0.15 KCl.



Plant Physiology
Ecological Plasticity of the Photosynthetic Apparatus of Hibiscus syriacus L. under Pressure of High Temperature, Insolation, and Air Pollution
摘要
This paper describes the integrated effect of high summer temperature, intensive insolation, gas pollution, and dust in the air on the pigment content and net oxygen production (apparent photosynthesis) and dark respiration rates of common hibiscus (Hibiscus syriacus L.) leaves. The study included three observation sites: Tashkent Botanical Garden (Academy of Sciences, the Republic of Uzbekistan), the public garden in the central part of the city of Tashkent, and a mountain holiday camp. The research was carried out in 2017 during the period of active vegetation. The results of experiments showed a high adaptive potential of H. syriacus L., as well as its adaptiveness to stress environmental factors of the semiarid zone, provided a sufficient level of its irrigation. The ecological plasticity of the photosynthetic apparatus of hibiscus plays a key role in species adaptation to environmental conditions. It has been revealed that the growth of the plants of the Tashkent Botanical Garden under shading conditions leads to the formation of large, wide, thin, shade leaf blades, which can be considered as the manifestation of sciomorphosis. Heliomorphosis features of hibiscus leaves were identified in mountains, where sun leaves with significantly smaller, thickened, and compacted blades are formed under high insolation. The adaptive significance of these structural leaf modifications is to strengthen photosynthetic capacity for compensating the deficiency in sunlight (in the case of sciomorphosis), and, on the contrary, to provide mutual shading for photosynthetic elements as a measure of protection against the damaging effect of redundant solar radiation (in the case of heliomorphosis). This provides carbon dioxide assimilation and organic matter production for maintaining the constant energy balance for the plant under different environmental conditions. The study of the temperature correlation of dark respiration and net oxygen production rates has shown that these processes are more resistant to temperature injuries under more extreme environmental conditions. In addition, mature H. syriacus leaves have a higher resistance than young leaves; i.e., the plant adapts to possible temperature drops in the process of its ontogenesis. Taking into account the optimal measuring conditions, the net oxygen production rate of H. syriacus during the period of active vegetation is approximately at the same level under different growing conditions (0.20 ± 0.05 μmol of O2/(dm2 s)); this is considered a norm of reaction of the net production (apparent photosynthesis) rate of H. syriacus and determines the specific features of its photosynthetic apparatus.



Effects of Root Cutting on Cytokinin Content in the Shoot Apex Cells of Arabidopsis Plants
摘要
The dependence of cytokinin accumulation in the shoot apexes of Arabidopsis plants on the delivery of these hormones from the roots was studied. For the estimation of cytokinin content in the cells, the immunohistochemical localization method using antibodies against zeatin riboside was used. Differential conjugation of free cytokinin bases and their ribosides was used to prevent washing of cytokinins during the dehydration process. Root cutting decreased the immunostaining of zeatin in the cells of the shoot apical meristem, thereby supporting the hypothesis about dependence of cytokinin accumulation in these cells on the hormone delivery from the roots. The level of cytokinins in the cells of the shoot apex decreased under the effect of protonophore, indicating the important role of the secondary-active transmembrane transport process of cytokinins in the maintenance of their level in the cells of the shoot apex.



Ecology
On the Distribution of Pleurozium schreberi (Bryophyta, Hylocomiaceae) in the East European Plain and Eastern Fennoscandia
摘要
Pleurozium schreberi is one of the most common moss species in the forest area. It is dominant in the moss layer of blueberry and wood sorrel forests. It can occur in small quantities in almost all types of forests (even in bogs). It is also a typical component of the moss layer in tundra. The article considers the distribution of Pleurozium schreberi in the East European Plain and Eastern Fennoscandia. On the basis of literature sources on the occurrence of the species in different regions (according to point data), a model map of species distribution using the kriging-method has been created. The overlaying of the model map on the maps of spatial distribution of climatic parameters and vegetation zones in this area has revealed that the biogeographical preferences of the species. P. schreberi is characterized by its highest distribution in the forest zone. It often occurs here and represents a phytocenotically active species. The occurrence of Pleurozium schreberi dramatically decreases in the transition from the forest to the steppe zone, where it is a rather rare species, growing exclusively in pine and birch pegs. This species disappears in the open steppe. From the steppe zone to the south, the occurrence of Pleurozium schreberi gradually decreases with increase in summer temperatures and decrease in precipitation and with forest disappearance. In the north, where the species is highly active, its range abruptly ends on the coast of the Arctic Ocean. This pattern of distribution of Pleurozium schreberi is associated both with cenotic preferences and with climate: it becomes rare in regions with summer temperatures higher than +23°C and annual precipitation of less than 400 mm.


