On the attractors of step skew products over the Bernoulli shift
- Авторы: Okunev A.V.1, Shilin I.S.2
-
Учреждения:
- National Research University “Higher School of Economics,”
- Moscow Center for Continuous Mathematical Education
- Выпуск: Том 297, № 1 (2017)
- Страницы: 235-253
- Раздел: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174652
- DOI: https://doi.org/10.1134/S0081543817040149
- ID: 174652
Цитировать
Аннотация
We study the statistical and Milnor attractors of step skew products over the Bernoulli shift. In the case when the fiber is a circle, we prove that for a topologically generic step skew product the statistical and Milnor attractors coincide and are Lyapunov stable. To this end we study some properties of the projection of the attractor onto the fiber, which might be of independent interest. In the case when the fiber is a segment, we give a description of the Milnor attractor as the closure of the union of graphs of finitely many almost everywhere defined functions from the base of the skew product to the fiber.
Об авторах
A. Okunev
National Research University “Higher School of Economics,”
Автор, ответственный за переписку.
Email: aokunev@list.ru
Россия, ul. Myasnitskaya 20, Moscow, 101000
I. Shilin
Moscow Center for Continuous Mathematical Education
Email: aokunev@list.ru
Россия, Bol’shoi Vlas’evskii per. 11, Moscow, 119002
Дополнительные файлы
