A pronormality criterion for supplements to abelian normal subgroups


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A subgroup H of a group G is called pronormal if, for any element gG, the subgroups H and Hg are conjugate in the subgroup <H,Hg>. We prove that, if a group G has a normal abelian subgroup V and a subgroup H such that G = HV, then H is pronormal in G if and only if U = NU(H)[H,U] for any H-invariant subgroup U of V. Using this fact, we prove that the simple symplectic group PSp6n(q) with q ≡ ±3 (mod 8) contains a nonpronormal subgroup of odd index. Hence, we disprove the conjecture on the pronormality of subgroups of odd indices in finite simple groups, which was formulated in 2012 by E.P. Vdovin and D.O. Revin and verified by the authors in 2015 for many families of simple finite groups.

作者简介

A. Kondrat’ev

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

编辑信件的主要联系方式.
Email: a.s.kondratiev@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990; Yekaterinburg, 620000

N. Maslova

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Email: a.s.kondratiev@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990; Yekaterinburg, 620000

D. Revin

Sobolev Institute of Mathematics; Novosibirsk State University

Email: a.s.kondratiev@imm.uran.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017