A pronormality criterion for supplements to abelian normal subgroups
- 作者: Kondrat’ev A.S.1,2, Maslova N.V.1,2, Revin D.O.3,4
-
隶属关系:
- Krasovskii Institute of Mathematics and Mechanics
- Ural Federal University
- Sobolev Institute of Mathematics
- Novosibirsk State University
- 期: 卷 296, 编号 Suppl 1 (2017)
- 页面: 145-150
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174364
- DOI: https://doi.org/10.1134/S0081543817020134
- ID: 174364
如何引用文章
详细
A subgroup H of a group G is called pronormal if, for any element g ∈ G, the subgroups H and Hg are conjugate in the subgroup <H,Hg>. We prove that, if a group G has a normal abelian subgroup V and a subgroup H such that G = HV, then H is pronormal in G if and only if U = NU(H)[H,U] for any H-invariant subgroup U of V. Using this fact, we prove that the simple symplectic group PSp6n(q) with q ≡ ±3 (mod 8) contains a nonpronormal subgroup of odd index. Hence, we disprove the conjecture on the pronormality of subgroups of odd indices in finite simple groups, which was formulated in 2012 by E.P. Vdovin and D.O. Revin and verified by the authors in 2015 for many families of simple finite groups.
作者简介
A. Kondrat’ev
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
编辑信件的主要联系方式.
Email: a.s.kondratiev@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990; Yekaterinburg, 620000
N. Maslova
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
Email: a.s.kondratiev@imm.uran.ru
俄罗斯联邦, Yekaterinburg, 620990; Yekaterinburg, 620000
D. Revin
Sobolev Institute of Mathematics; Novosibirsk State University
Email: a.s.kondratiev@imm.uran.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
补充文件
