A pronormality criterion for supplements to abelian normal subgroups


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A subgroup H of a group G is called pronormal if, for any element gG, the subgroups H and Hg are conjugate in the subgroup <H,Hg>. We prove that, if a group G has a normal abelian subgroup V and a subgroup H such that G = HV, then H is pronormal in G if and only if U = NU(H)[H,U] for any H-invariant subgroup U of V. Using this fact, we prove that the simple symplectic group PSp6n(q) with q ≡ ±3 (mod 8) contains a nonpronormal subgroup of odd index. Hence, we disprove the conjecture on the pronormality of subgroups of odd indices in finite simple groups, which was formulated in 2012 by E.P. Vdovin and D.O. Revin and verified by the authors in 2015 for many families of simple finite groups.

Sobre autores

A. Kondrat’ev

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Autor responsável pela correspondência
Email: a.s.kondratiev@imm.uran.ru
Rússia, Yekaterinburg, 620990; Yekaterinburg, 620000

N. Maslova

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Email: a.s.kondratiev@imm.uran.ru
Rússia, Yekaterinburg, 620990; Yekaterinburg, 620000

D. Revin

Sobolev Institute of Mathematics; Novosibirsk State University

Email: a.s.kondratiev@imm.uran.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017