A pronormality criterion for supplements to abelian normal subgroups
- Autores: Kondrat’ev A.S.1,2, Maslova N.V.1,2, Revin D.O.3,4
-
Afiliações:
- Krasovskii Institute of Mathematics and Mechanics
- Ural Federal University
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Edição: Volume 296, Nº Suppl 1 (2017)
- Páginas: 145-150
- Seção: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174364
- DOI: https://doi.org/10.1134/S0081543817020134
- ID: 174364
Citar
Resumo
A subgroup H of a group G is called pronormal if, for any element g ∈ G, the subgroups H and Hg are conjugate in the subgroup <H,Hg>. We prove that, if a group G has a normal abelian subgroup V and a subgroup H such that G = HV, then H is pronormal in G if and only if U = NU(H)[H,U] for any H-invariant subgroup U of V. Using this fact, we prove that the simple symplectic group PSp6n(q) with q ≡ ±3 (mod 8) contains a nonpronormal subgroup of odd index. Hence, we disprove the conjecture on the pronormality of subgroups of odd indices in finite simple groups, which was formulated in 2012 by E.P. Vdovin and D.O. Revin and verified by the authors in 2015 for many families of simple finite groups.
Sobre autores
A. Kondrat’ev
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
Autor responsável pela correspondência
Email: a.s.kondratiev@imm.uran.ru
Rússia, Yekaterinburg, 620990; Yekaterinburg, 620000
N. Maslova
Krasovskii Institute of Mathematics and Mechanics; Ural Federal University
Email: a.s.kondratiev@imm.uran.ru
Rússia, Yekaterinburg, 620990; Yekaterinburg, 620000
D. Revin
Sobolev Institute of Mathematics; Novosibirsk State University
Email: a.s.kondratiev@imm.uran.ru
Rússia, Novosibirsk, 630090; Novosibirsk, 630090
Arquivos suplementares
