A pronormality criterion for supplements to abelian normal subgroups


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A subgroup H of a group G is called pronormal if, for any element gG, the subgroups H and Hg are conjugate in the subgroup <H,Hg>. We prove that, if a group G has a normal abelian subgroup V and a subgroup H such that G = HV, then H is pronormal in G if and only if U = NU(H)[H,U] for any H-invariant subgroup U of V. Using this fact, we prove that the simple symplectic group PSp6n(q) with q ≡ ±3 (mod 8) contains a nonpronormal subgroup of odd index. Hence, we disprove the conjecture on the pronormality of subgroups of odd indices in finite simple groups, which was formulated in 2012 by E.P. Vdovin and D.O. Revin and verified by the authors in 2015 for many families of simple finite groups.

Авторлар туралы

A. Kondrat’ev

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Хат алмасуға жауапты Автор.
Email: a.s.kondratiev@imm.uran.ru
Ресей, Yekaterinburg, 620990; Yekaterinburg, 620000

N. Maslova

Krasovskii Institute of Mathematics and Mechanics; Ural Federal University

Email: a.s.kondratiev@imm.uran.ru
Ресей, Yekaterinburg, 620990; Yekaterinburg, 620000

D. Revin

Sobolev Institute of Mathematics; Novosibirsk State University

Email: a.s.kondratiev@imm.uran.ru
Ресей, Novosibirsk, 630090; Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017