Fourier—Price coefficients of class GM and best approximations of functions in the Lorentz space Lpθ[0, 1), 1<p<+∞, 1<θ<+∞
- 作者: Bimendina A.U.1, Smailov E.S.2
-
隶属关系:
- E.A. Buketov Karaganda State University
- Institute of Applied Mathematics, Committee on Science
- 期: 卷 293, 编号 1 (2016)
- 页面: 77-98
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173687
- DOI: https://doi.org/10.1134/S0081543816040064
- ID: 173687
如何引用文章
详细
For polynomials in the Price system, we establish an inequality of different metrics in the Lorentz spaces. Applying this inequality, we prove a Hardy–Littlewood theorem for the Fourier–Price series with GM sequences of coefficients in the two-parameter Lorentz spaces and in the Nikol’skii–Besov spaces with a Price basis. We also study the behavior of the best approximations of functions by Price polynomials in the metric of the Lorentz space.
作者简介
A. Bimendina
E.A. Buketov Karaganda State University
编辑信件的主要联系方式.
Email: bimend@mail.ru
哈萨克斯坦, ul. Universitetskaya 28, Karaganda, 100028
E. Smailov
Institute of Applied Mathematics, Committee on Science
Email: bimend@mail.ru
哈萨克斯坦, ul. Universitetskaya 28A, Karaganda, 100028
补充文件
