Fourier—Price coefficients of class GM and best approximations of functions in the Lorentz space Lpθ[0, 1), 1<p<+∞, 1<θ<+∞
- Авторлар: Bimendina A.U.1, Smailov E.S.2
-
Мекемелер:
- E.A. Buketov Karaganda State University
- Institute of Applied Mathematics, Committee on Science
- Шығарылым: Том 293, № 1 (2016)
- Беттер: 77-98
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173687
- DOI: https://doi.org/10.1134/S0081543816040064
- ID: 173687
Дәйексөз келтіру
Аннотация
For polynomials in the Price system, we establish an inequality of different metrics in the Lorentz spaces. Applying this inequality, we prove a Hardy–Littlewood theorem for the Fourier–Price series with GM sequences of coefficients in the two-parameter Lorentz spaces and in the Nikol’skii–Besov spaces with a Price basis. We also study the behavior of the best approximations of functions by Price polynomials in the metric of the Lorentz space.
Авторлар туралы
A. Bimendina
E.A. Buketov Karaganda State University
Хат алмасуға жауапты Автор.
Email: bimend@mail.ru
Қазақстан, ul. Universitetskaya 28, Karaganda, 100028
E. Smailov
Institute of Applied Mathematics, Committee on Science
Email: bimend@mail.ru
Қазақстан, ul. Universitetskaya 28A, Karaganda, 100028
Қосымша файлдар
