Topological and ergodic aspects of partially hyperbolic diffeomorphisms and nonhyperbolic step skew products
- Авторы: Díaz L.J.1, Gelfert K.2, Rams M.3
-
Учреждения:
- Departamento de Matemática PUC-Rio
- Instituto de Matemática Universidade Federal do Rio de Janeiro
- Institute of Mathematics
- Выпуск: Том 297, № 1 (2017)
- Страницы: 98-115
- Раздел: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/174583
- DOI: https://doi.org/10.1134/S008154381704006X
- ID: 174583
Цитировать
Аннотация
We review some ergodic and topological aspects of robustly transitive partially hyperbolic diffeomorphisms with one-dimensional center direction. We also discuss step skew-product maps whose fiber maps are defined on the circle which model such dynamics. These dynamics are genuinely nonhyperbolic and exhibit simultaneously ergodic measures with positive, negative, and zero exponents as well as intermingled horseshoes having different types of hyperbolicity. We discuss some recent advances concerning the topology of the space of invariant measures and properties of the spectrum of Lyapunov exponents.
Об авторах
L. Díaz
Departamento de Matemática PUC-Rio
Автор, ответственный за переписку.
Email: lodiaz@mat.puc-rio.br
Бразилия, Marquês de S˜ao Vicente 225, Gávea, Rio de Janeiro, 22451-900
K. Gelfert
Instituto de Matemática Universidade Federal do Rio de Janeiro
Email: lodiaz@mat.puc-rio.br
Бразилия, Av. Athos da Silveira Ramos 149, Cidade Universitária – Ilha do Fund˜ao, Rio de Janeiro, 21945-909
M. Rams
Institute of Mathematics
Email: lodiaz@mat.puc-rio.br
Польша, ul. Śniadeckich 8, Warszawa, 00-656
Дополнительные файлы
