Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The problem of equiconvergence of spectral decompositions corresponding to the systems of root functions of two one-dimensional Dirac operators ℒP,U and ℒ0,U with potential P summable on a finite interval and Birkhoff-regular boundary conditions is analyzed. It is proved that in the case of PLϰ[0, π], ϰ ∈ (1,∞], equiconvergence holds for every function f ∈ Lμ[0, π], μ ∈ [1,∞], in the norm of the space Lν[0, π], ν ∈ [1,∞], if the indices ϰ, μ, and ν satisfy the inequality 1/ϰ + 1/μ − 1/ν ≤ 1 (except for the case when ϰ = ν = ∞ and μ = 1). In particular, in the case of a square summable potential, the uniform equiconvergence on the interval [0, π] is proved for an arbitrary function f ∈ L2[0, π].

Sobre autores

I. Sadovnichaya

Faculty of Computational Mathematics and Cybernetics

Autor responsável pela correspondência
Email: ivsad@yandex.ru
Rússia, Moscow, 119991

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016