Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces
- Авторлар: Sadovnichaya I.V.1
-
Мекемелер:
- Faculty of Computational Mathematics and Cybernetics
- Шығарылым: Том 293, № 1 (2016)
- Беттер: 288-316
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173814
- DOI: https://doi.org/10.1134/S0081543816040209
- ID: 173814
Дәйексөз келтіру
Аннотация
The problem of equiconvergence of spectral decompositions corresponding to the systems of root functions of two one-dimensional Dirac operators ℒP,U and ℒ0,U with potential P summable on a finite interval and Birkhoff-regular boundary conditions is analyzed. It is proved that in the case of P ∈ Lϰ[0, π], ϰ ∈ (1,∞], equiconvergence holds for every function f ∈ Lμ[0, π], μ ∈ [1,∞], in the norm of the space Lν[0, π], ν ∈ [1,∞], if the indices ϰ, μ, and ν satisfy the inequality 1/ϰ + 1/μ − 1/ν ≤ 1 (except for the case when ϰ = ν = ∞ and μ = 1). In particular, in the case of a square summable potential, the uniform equiconvergence on the interval [0, π] is proved for an arbitrary function f ∈ L2[0, π].
Авторлар туралы
I. Sadovnichaya
Faculty of Computational Mathematics and Cybernetics
Хат алмасуға жауапты Автор.
Email: ivsad@yandex.ru
Ресей, Moscow, 119991
Қосымша файлдар
