Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The problem of equiconvergence of spectral decompositions corresponding to the systems of root functions of two one-dimensional Dirac operators ℒP,U and ℒ0,U with potential P summable on a finite interval and Birkhoff-regular boundary conditions is analyzed. It is proved that in the case of PLϰ[0, π], ϰ ∈ (1,∞], equiconvergence holds for every function f ∈ Lμ[0, π], μ ∈ [1,∞], in the norm of the space Lν[0, π], ν ∈ [1,∞], if the indices ϰ, μ, and ν satisfy the inequality 1/ϰ + 1/μ − 1/ν ≤ 1 (except for the case when ϰ = ν = ∞ and μ = 1). In particular, in the case of a square summable potential, the uniform equiconvergence on the interval [0, π] is proved for an arbitrary function f ∈ L2[0, π].

作者简介

I. Sadovnichaya

Faculty of Computational Mathematics and Cybernetics

编辑信件的主要联系方式.
Email: ivsad@yandex.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016