Equiconvergence of spectral decompositions for the Dirac system with potential in Lebesgue spaces
- 作者: Sadovnichaya I.V.1
-
隶属关系:
- Faculty of Computational Mathematics and Cybernetics
- 期: 卷 293, 编号 1 (2016)
- 页面: 288-316
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173814
- DOI: https://doi.org/10.1134/S0081543816040209
- ID: 173814
如何引用文章
详细
The problem of equiconvergence of spectral decompositions corresponding to the systems of root functions of two one-dimensional Dirac operators ℒP,U and ℒ0,U with potential P summable on a finite interval and Birkhoff-regular boundary conditions is analyzed. It is proved that in the case of P ∈ Lϰ[0, π], ϰ ∈ (1,∞], equiconvergence holds for every function f ∈ Lμ[0, π], μ ∈ [1,∞], in the norm of the space Lν[0, π], ν ∈ [1,∞], if the indices ϰ, μ, and ν satisfy the inequality 1/ϰ + 1/μ − 1/ν ≤ 1 (except for the case when ϰ = ν = ∞ and μ = 1). In particular, in the case of a square summable potential, the uniform equiconvergence on the interval [0, π] is proved for an arbitrary function f ∈ L2[0, π].
作者简介
I. Sadovnichaya
Faculty of Computational Mathematics and Cybernetics
编辑信件的主要联系方式.
Email: ivsad@yandex.ru
俄罗斯联邦, Moscow, 119991
补充文件
