Hermitian Metric and the Infinite Dihedral Group
- Autores: Goldberg B.1, Yang R.1
-
Afiliações:
- Department of Mathematics and Statistics
- Edição: Volume 304, Nº 1 (2019)
- Páginas: 136-145
- Seção: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175742
- DOI: https://doi.org/10.1134/S0081543819010097
- ID: 175742
Citar
Resumo
For a tuple A = (A1,A2,…, An) of elements in a unital Banach algebra B, the associated multiparameter pencil is A(z) = z1A1 + z2A2 + … + znAn. The projective spectrum P(A) is the collection of z ∈ ℂn such that A(z) is not invertible. Using the fundamental form ΩA = −ωA* ∧ ωA, where ωA(z) = A−1(z) dA(z) is the Maurer–Cartan form, R. Douglas and the second author defined and studied a natural Hermitian metric on the resolvent set Pc(A) = ℂn \ P(A). This paper examines that metric in the case of the infinite dihedral group, D∞ = <a, t | a2 = t2 = 1>, with respect to the left regular representation λ. For the non-homogeneous pencil R(z) = I + z1λ(a) + z2λ(t), we explicitly compute the metric on Pc(R) and show that the completion of Pc(R) under the metric is ℂ2 \ {(±1, 0), (0, ±1)}, which rediscovers the classical spectra σ(λ(a)) = σ(λ(t)) = {± 1}. This paper is a follow-up of the papers by R. G. Douglas and R. Yang (2018) and R. Grigorchuk and R. Yang (2017).
Sobre autores
Bryan Goldberg
Department of Mathematics and Statistics
Autor responsável pela correspondência
Email: bgoldberg@albany.edu
Estados Unidos da América, 1400 Washington Ave., Albany, NY, 12222
Rongwei Yang
Department of Mathematics and Statistics
Autor responsável pela correspondência
Email: ryang@albany.edu
Estados Unidos da América, 1400 Washington Ave., Albany, NY, 12222
Arquivos suplementares
