Hermitian Metric and the Infinite Dihedral Group
- 作者: Goldberg B.1, Yang R.1
-
隶属关系:
- Department of Mathematics and Statistics
- 期: 卷 304, 编号 1 (2019)
- 页面: 136-145
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175742
- DOI: https://doi.org/10.1134/S0081543819010097
- ID: 175742
如何引用文章
详细
For a tuple A = (A1,A2,…, An) of elements in a unital Banach algebra B, the associated multiparameter pencil is A(z) = z1A1 + z2A2 + … + znAn. The projective spectrum P(A) is the collection of z ∈ ℂn such that A(z) is not invertible. Using the fundamental form ΩA = −ωA* ∧ ωA, where ωA(z) = A−1(z) dA(z) is the Maurer–Cartan form, R. Douglas and the second author defined and studied a natural Hermitian metric on the resolvent set Pc(A) = ℂn \ P(A). This paper examines that metric in the case of the infinite dihedral group, D∞ = <a, t | a2 = t2 = 1>, with respect to the left regular representation λ. For the non-homogeneous pencil R(z) = I + z1λ(a) + z2λ(t), we explicitly compute the metric on Pc(R) and show that the completion of Pc(R) under the metric is ℂ2 \ {(±1, 0), (0, ±1)}, which rediscovers the classical spectra σ(λ(a)) = σ(λ(t)) = {± 1}. This paper is a follow-up of the papers by R. G. Douglas and R. Yang (2018) and R. Grigorchuk and R. Yang (2017).
作者简介
Bryan Goldberg
Department of Mathematics and Statistics
编辑信件的主要联系方式.
Email: bgoldberg@albany.edu
美国, 1400 Washington Ave., Albany, NY, 12222
Rongwei Yang
Department of Mathematics and Statistics
编辑信件的主要联系方式.
Email: ryang@albany.edu
美国, 1400 Washington Ave., Albany, NY, 12222
补充文件
