Spectrum of the Second Variation
- Авторлар: Agrachev A.A.1,2,3
-
Мекемелер:
- Scuola Internazionale Superiore di Studi Avanzati (SISSA)
- Steklov Mathematical Institute of Russian Academy of Sciences
- Program Systems Institute of Russian Academy of Sciences
- Шығарылым: Том 304, № 1 (2019)
- Беттер: 26-41
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175734
- DOI: https://doi.org/10.1134/S0081543819010036
- ID: 175734
Дәйексөз келтіру
Аннотация
Second variation of a smooth optimal control problem at a regular extremal is a symmetric Fredholm operator. We study the asymptotics of the spectrum of this operator and give an explicit expression for its determinant in terms of solutions of the Jacobi equation. In the case of the least action principle for the harmonic oscillator, we obtain the classical Euler identity Πn=1∞(1 − x2/(ρn)2) = sin x/x. The general case may serve as a rich source of new nice identities.
Авторлар туралы
A. Agrachev
Scuola Internazionale Superiore di Studi Avanzati (SISSA); Steklov Mathematical Institute of Russian Academy of Sciences; Program Systems Institute of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: agrachev@mi-ras.ru
Италия, via Bonomea 265, Trieste, 34136; ul. Gubkina 8, Moscow, 119991; Pereslavl-Zalessky, Yaroslavl Region, 152020
Қосымша файлдар
