Spectrum of the Second Variation
- 作者: Agrachev A.A.1,2,3
-
隶属关系:
- Scuola Internazionale Superiore di Studi Avanzati (SISSA)
- Steklov Mathematical Institute of Russian Academy of Sciences
- Program Systems Institute of Russian Academy of Sciences
- 期: 卷 304, 编号 1 (2019)
- 页面: 26-41
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175734
- DOI: https://doi.org/10.1134/S0081543819010036
- ID: 175734
如何引用文章
详细
Second variation of a smooth optimal control problem at a regular extremal is a symmetric Fredholm operator. We study the asymptotics of the spectrum of this operator and give an explicit expression for its determinant in terms of solutions of the Jacobi equation. In the case of the least action principle for the harmonic oscillator, we obtain the classical Euler identity Πn=1∞(1 − x2/(ρn)2) = sin x/x. The general case may serve as a rich source of new nice identities.
作者简介
A. Agrachev
Scuola Internazionale Superiore di Studi Avanzati (SISSA); Steklov Mathematical Institute of Russian Academy of Sciences; Program Systems Institute of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: agrachev@mi-ras.ru
意大利, via Bonomea 265, Trieste, 34136; ul. Gubkina 8, Moscow, 119991; Pereslavl-Zalessky, Yaroslavl Region, 152020
补充文件
