Spectrum of the Second Variation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Second variation of a smooth optimal control problem at a regular extremal is a symmetric Fredholm operator. We study the asymptotics of the spectrum of this operator and give an explicit expression for its determinant in terms of solutions of the Jacobi equation. In the case of the least action principle for the harmonic oscillator, we obtain the classical Euler identity Πn=1(1 − x2/(ρn)2) = sin x/x. The general case may serve as a rich source of new nice identities.

作者简介

A. Agrachev

Scuola Internazionale Superiore di Studi Avanzati (SISSA); Steklov Mathematical Institute of Russian Academy of Sciences; Program Systems Institute of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: agrachev@mi-ras.ru
意大利, via Bonomea 265, Trieste, 34136; ul. Gubkina 8, Moscow, 119991; Pereslavl-Zalessky, Yaroslavl Region, 152020

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019