Fourier—Price coefficients of class GM and best approximations of functions in the Lorentz space L[0, 1), 1<p<+∞, 1<θ<+∞


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

For polynomials in the Price system, we establish an inequality of different metrics in the Lorentz spaces. Applying this inequality, we prove a Hardy–Littlewood theorem for the Fourier–Price series with GM sequences of coefficients in the two-parameter Lorentz spaces and in the Nikol’skii–Besov spaces with a Price basis. We also study the behavior of the best approximations of functions by Price polynomials in the metric of the Lorentz space.

Sobre autores

A. Bimendina

E.A. Buketov Karaganda State University

Autor responsável pela correspondência
Email: bimend@mail.ru
Cazaquistão, ul. Universitetskaya 28, Karaganda, 100028

E. Smailov

Institute of Applied Mathematics, Committee on Science

Email: bimend@mail.ru
Cazaquistão, ul. Universitetskaya 28A, Karaganda, 100028

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016