Fourier—Price coefficients of class GM and best approximations of functions in the Lorentz space Lpθ[0, 1), 1<p<+∞, 1<θ<+∞
- Autores: Bimendina A.U.1, Smailov E.S.2
-
Afiliações:
- E.A. Buketov Karaganda State University
- Institute of Applied Mathematics, Committee on Science
- Edição: Volume 293, Nº 1 (2016)
- Páginas: 77-98
- Seção: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173687
- DOI: https://doi.org/10.1134/S0081543816040064
- ID: 173687
Citar
Resumo
For polynomials in the Price system, we establish an inequality of different metrics in the Lorentz spaces. Applying this inequality, we prove a Hardy–Littlewood theorem for the Fourier–Price series with GM sequences of coefficients in the two-parameter Lorentz spaces and in the Nikol’skii–Besov spaces with a Price basis. We also study the behavior of the best approximations of functions by Price polynomials in the metric of the Lorentz space.
Sobre autores
A. Bimendina
E.A. Buketov Karaganda State University
Autor responsável pela correspondência
Email: bimend@mail.ru
Cazaquistão, ul. Universitetskaya 28, Karaganda, 100028
E. Smailov
Institute of Applied Mathematics, Committee on Science
Email: bimend@mail.ru
Cazaquistão, ul. Universitetskaya 28A, Karaganda, 100028
Arquivos suplementares
