Finite simple groups in which all maximal subgroups are π-closed. I
- Авторлар: Belonogov V.A.1
-
Мекемелер:
- Krasovskii Institute of Mathematics and Mechanics
- Шығарылым: Том 293, № Suppl 1 (2016)
- Беттер: 22-31
- Бөлім: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/173514
- DOI: https://doi.org/10.1134/S0081543816050035
- ID: 173514
Дәйексөз келтіру
Аннотация
Finite simple nonabelian groups G that are not π-closed for some set of primes π but have π-closed maximal subgroups (property (*) for (G, π)) are studied. We give a list L of finite simple groups that contains any group G with the above property (for some π). It is proved that 2 ∉ π for any pair (G, π) with property (*) (Theorem 1). In addition, we specify for any sporadic simple group G from L all sets of primes π such that the pair (G, π) has property (*) (Theorem 2). The proof uses the author’s results on the control of prime spectra of finite simple groups.
Авторлар туралы
V. Belonogov
Krasovskii Institute of Mathematics and Mechanics
Хат алмасуға жауапты Автор.
Email: belonogov@imm.uran.ru
Ресей, ul. S. Kovalevskoi 16, Yekaterinburg, 620990
Қосымша файлдар
