Finite simple groups in which all maximal subgroups are π-closed. I


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Finite simple nonabelian groups G that are not π-closed for some set of primes π but have π-closed maximal subgroups (property (*) for (G, π)) are studied. We give a list L of finite simple groups that contains any group G with the above property (for some π). It is proved that 2 ∉ π for any pair (G, π) with property (*) (Theorem 1). In addition, we specify for any sporadic simple group G from L all sets of primes π such that the pair (G, π) has property (*) (Theorem 2). The proof uses the author’s results on the control of prime spectra of finite simple groups.

作者简介

V. Belonogov

Krasovskii Institute of Mathematics and Mechanics

编辑信件的主要联系方式.
Email: belonogov@imm.uran.ru
俄罗斯联邦, ul. S. Kovalevskoi 16, Yekaterinburg, 620990

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016