Ergodic decomposition of group actions on rooted trees


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We prove a general result about the decomposition into ergodic components of group actions on boundaries of spherically homogeneous rooted trees. Namely, we identify the space of ergodic components with the boundary of the orbit tree associated with the action, and show that the canonical system of ergodic invariant probability measures coincides with the system of uniform measures on the boundaries of minimal invariant subtrees of the tree. Special attention is paid to the case of groups generated by finite automata. Few examples, including the lamplighter group, Sushchansky group, and so-called universal group, are considered in order to demonstrate applications of the theorem.

Авторлар туралы

Rostislav Grigorchuk

Department of Mathematics

Хат алмасуға жауапты Автор.
Email: grigorch@math.tamu.edu
АҚШ, College Station, TX, 77843

Dmytro Savchuk

Department of Mathematics and Statistics

Email: grigorch@math.tamu.edu
АҚШ, 4202 East Fowler Ave., Tampa, FL, 33620-5700

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016