Ergodic decomposition of group actions on rooted trees


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We prove a general result about the decomposition into ergodic components of group actions on boundaries of spherically homogeneous rooted trees. Namely, we identify the space of ergodic components with the boundary of the orbit tree associated with the action, and show that the canonical system of ergodic invariant probability measures coincides with the system of uniform measures on the boundaries of minimal invariant subtrees of the tree. Special attention is paid to the case of groups generated by finite automata. Few examples, including the lamplighter group, Sushchansky group, and so-called universal group, are considered in order to demonstrate applications of the theorem.

Sobre autores

Rostislav Grigorchuk

Department of Mathematics

Autor responsável pela correspondência
Email: grigorch@math.tamu.edu
Estados Unidos da América, College Station, TX, 77843

Dmytro Savchuk

Department of Mathematics and Statistics

Email: grigorch@math.tamu.edu
Estados Unidos da América, 4202 East Fowler Ave., Tampa, FL, 33620-5700

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016