The Direct Theorem of the Theory of Approximation of Periodic Functions with Monotone Fourier Coefficients in Different Metrics


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

n−(l−σ)(∑v=1nvp(l−σ)−1EV−1P)1/p≍(∑v=n+1∞vqσ−1ωlq(f;π/v)p)1/q,n∈N,\({n^{ - (l - \sigma )}}{(\sum\limits_{v = 1}^n {{v^{p(l - \sigma ) - 1}}E_{V - 1}^P} )^{1/p}}\asymp{(\sum\limits_{v = n + 1}^\infty {{v^{q\sigma - 1}}\omega _l^q{{(f;\pi /v)}_p}} )^{1/q}},n \in N,\)
.

In the lower bound in equality (a), the second term nσωl(f; π/n)p generally cannot be omitted. However, if the sequence {ωl(f; π/n)p}n=1 or the sequence {En−1(f)p}n=1 satisfies Bari’s (Bl(p))-condition, which is equivalent to Stechkin’s (Sl)-condition, then

\(E_{n-1}(f)_q\asymp(\sum_{\nu=n+1}^\infty \nu^{q\sigma-1}\omega_l^q (f; \pi/\nu)_{p})^{1/q}, n\in \mathbb{N}.\)

The upper bound in equality (b), which holds for every function \(f \in L_p(\mathbb{T})\) if the series converges, is a strengthened version of the direct theorem. The order equality (b) shows that the strengthened version is order-optimal on the whole class \(M_p(\mathbb{T})\).

Авторлар туралы

N. Il’yasov

Baku State University

Хат алмасуға жауапты Автор.
Email: niyazi.ilyasov@gmail.com
Әзірбайжан, Baku, 1148

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018