The Direct Theorem of the Theory of Approximation of Periodic Functions with Monotone Fourier Coefficients in Different Metrics
- 作者: Il’yasov N.A.1
-
隶属关系:
- Baku State University
- 期: 卷 303, 编号 Suppl 1 (2018)
- 页面: 100-114
- 栏目: Article
- URL: https://journals.rcsi.science/0081-5438/article/view/175706
- DOI: https://doi.org/10.1134/S0081543818090110
- ID: 175706
如何引用文章
详细
n−(l−σ)(∑v=1nvp(l−σ)−1EV−1P)1/p≍(∑v=n+1∞vqσ−1ωlq(f;π/v)p)1/q,n∈N,\({n^{ - (l - \sigma )}}{(\sum\limits_{v = 1}^n {{v^{p(l - \sigma ) - 1}}E_{V - 1}^P} )^{1/p}}\asymp{(\sum\limits_{v = n + 1}^\infty {{v^{q\sigma - 1}}\omega _l^q{{(f;\pi /v)}_p}} )^{1/q}},n \in N,\)![]()
.In the lower bound in equality (a), the second term nσωl(f; π/n)p generally cannot be omitted. However, if the sequence {ωl(f; π/n)p}n=1∞ or the sequence {En−1(f)p}n=1∞ satisfies Bari’s (Bl(p))-condition, which is equivalent to Stechkin’s (Sl)-condition, then
\(E_{n-1}(f)_q\asymp(\sum_{\nu=n+1}^\infty \nu^{q\sigma-1}\omega_l^q (f; \pi/\nu)_{p})^{1/q}, n\in \mathbb{N}.\)![]()
The upper bound in equality (b), which holds for every function \(f \in L_p(\mathbb{T})\) if the series converges, is a strengthened version of the direct theorem. The order equality (b) shows that the strengthened version is order-optimal on the whole class \(M_p(\mathbb{T})\).
作者简介
N. Il’yasov
Baku State University
编辑信件的主要联系方式.
Email: niyazi.ilyasov@gmail.com
阿塞拜疆, Baku, 1148
补充文件
