Asymptotically optimal approach to the approximate solution of several problems of covering a graph by nonadjacent cycles


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the m-Cycle Cover Problem of covering a complete undirected graph by m vertex-nonadjacent cycles of extremal total edge weight. The so-called TSP approach to the construction of an approximation algorithm for this problem with the use of a solution of the traveling salesman problem (TSP) is presented. Modifications of the algorithm for the Euclidean Max m-Cycle Cover Problem with deterministic instances (edge weights) in a multidimensional Euclidean space and the Random Min m-Cycle Cover Problem with random instances UNI(0,1) are analyzed. It is shown that both algorithms have time complexity O(n3) and are asymptotically optimal for the number of covering cycles m = o(n) and \(m \leqslant \frac{{n^{1/3} }}
{{\ln n}}\)
, respectively.

Авторлар туралы

E. Gimadi

Sobolev Institute of Mathematics

Хат алмасуға жауапты Автор.
Email: gimadi@math.nsc.ru
Ресей, Novosibirsk, 630090

I. Rykov

Sobolev Institute of Mathematics

Email: gimadi@math.nsc.ru
Ресей, Novosibirsk, 630090

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2016